Name: MA131/135: College Algebra (Spring 2017) Instructor: Justin Ryan Midterm Exam 1—Sections 1.1–1.5, and 2.1–2.3 Butler Community College				
Read and follow all instructions.				
Part I: True or False [2 points each] Read each statement carefully. In the space provided, write T if the statement is <u>always</u> true, or F otherwise.				
1.	The lines $y = 3x - 5$ and $6x - 2y = 12$ are parallel.			
2.	Every line crosses the y -axis in exactly one point.			
3.	The graph of $y = x^2 - 4x + 4$ is obtained by shifting the graph of $y = x^2$ left 2 units.			
4.	The distance between the points $(-3,4)$ and $(3,-4)$ is 10 units.			
5.	The circle defined by $x^2 + y^2 = 25$ has center $(0,0)$ and radius 25.			
Part II: Fill in the Blank [2 points each] Choose the appropriate word or phrase from the word bank, and write its corresponding letter in the space provided.				
Word Bank:				
	A. Point-Slope	B. Parallel	C. Right	
	D. Perpendicular	E. <i>x</i> -axis	$\mathbf{F.} y$ -axis	
	G. Down	H. Left	I. Slope-Intercept	
	J. Standard	K. Rotational	L. Up	
6.	6. The graph of $y = \sqrt{-x}$ is obtained from the graph of $y = \sqrt{x}$ by reflecting over the			
7.	The graph of the function $y = -4x^5 + 16x^3 - 8x$ has symmetry.			
8.	" $Ax + By = C$," $A \ge 0$, is called the form of the equation of a line.			
9.	_9. The graph of $(x-1)^2 + y^2 = 1$ is obtained from the graph of $x^2 + y^2 = 1$ by shifting 1 unit.			

_10. The lines 3x + y = 2 and x - 3y = 2 are _____.

Part III: Multiple Choice [5 points each]

Write the letter corresponding to the appropriate answer in the space provided.

- _____11. Complete the square: $2x^2 4x + 6$
 - **A.** $2(x-1)^2+2$
- **B.** $2(x-1)^2+4$
- C. $2(x+1)^2+4$
- **D.** $(2x-1)^2+4$
- **____12.** What is the center of the circle $(x-3)^2 + (y+6)^2 = 36$?
 - A. (3,6)

B. (-3,6)

 $\mathbf{C}. (3, -6)$

D. (0,0)

- **____13.** What is the radius of the circle $(x-3)^2 + (y+6)^2 = 36$?
 - **A.** 36

B. 6

C. $\sqrt{6}$

D. 1296

- **____14.** Find the midpoint of the line segment connecting the points (2, -1) and (-6, 5).
 - **A.** (-2,2)

B. (4, -3)

C. (-4,3)

D. (2, -2)

- **_____15.** Find the distance between the points (7, 12) and (4, 16).
 - **A.** 5

B. 25

C. $\sqrt{5}$

D. 525

____16. Find the equation of the line passing through the points (0,3) and (-2,1).

A.
$$y = 3x + 1$$

B.
$$y = x - 3$$

C.
$$y = x + 3$$

D.
$$y = x + 1$$

17. Find an equation of the line passing through the points (5,5) and (3,9).

A.
$$y = -2x + 15$$

B.
$$y = -2x - 5$$

C.
$$y = 2x + 4$$

D.
$$y = 2x - 15$$

_____18. Find an equation of the circle with center (2, -1) and passing through the point (-1,3).

A.
$$(x+1)^2 + (y-3)^2 = 25$$

B.
$$(x+2)^2 + (y-1)^2 = 25$$

C.
$$(x-2)^2 + (y+1)^2 = 5$$

D.
$$(x-2)^2 + (y+1)^2 = 25$$

- **_____19.** Find the x-intercept of the line 5x 10y = 15.
 - **A.** $\left(-\frac{3}{2},0\right)$

B. (0,3)

C. $(0, -\frac{3}{2})$

D. (3,0)

- **____20.** Find the y-intercept of the line 5x 10y = 15.
 - **A.** $\left(-\frac{3}{2},0\right)$

B. (0,3)

C. $(0, -\frac{3}{2})$

D. (3,0)

- **____21.** The function f(x) = -|x+7| 12 is obtained from its parent graph by each of the following transformations **except**:
 - **A.** Reflection over the x-axis

B. Shift left 7 units

 \mathbf{C} . Reflection over the y-axis

D. Shift down 12 units

____22. Determine whether the equation $x^2 + 4x + y^2 - 8y = 5$ defines a circle. If so, give its center and radius

A.
$$C(2, -4), r = 5$$

B.
$$C(-2,4), r=5$$

C.
$$C(-4,8)$$
, $r=25$

_____23. The graph of $y = \sqrt{x}$ is reflected over the x-axis, stretched vertically by a factor of three, then shifted left 7 and up 5 units. Give an equation of the function defined by the resulting graph.

A.
$$f(x) = -\sqrt{3x-7} - 5$$

B.
$$f(x) = 3\sqrt{-x+7} + 5$$

C.
$$f(x) = -3\sqrt{x+7} + 5$$

D.
$$f(x) = -3\sqrt{x-7} + 5$$

- **____24.** The function $f(x) = \frac{3x^7 5x^3}{2x^2 + x^4}$ is ...
 - A. even

 \mathbf{B} . odd

C. neither

D. I don't know, dude

Part IV: Short Answer [5 points each]

Show enough work. Clearly mark your final answers. Partial credit given when deserved.

25. Describe how the graph of $y = x^2 + 12x + 32$ is obtained from the graph of the parent function.

26. Use the graph to: a.) identify the parent function; b.) list all transformations; c.) write an equation of the function.

