Name:

 $\textbf{M242: Calculus I} \; (\text{Fall 2018})$

Instructor: Justin Ryan Final Exam

Read and follow all instructions. You may not use any electronic devices. You may use a single two-sided 8.5 by 11 inch page of your own hand-written notes.

Part I: True/False [2 points each]

Neatly write **T** if the statement is always true, and **F** otherwise.

- _____1. Let f be a function satisfying f(a) = k. Then $\lim_{x \to a} f(x) = k$.
- **2.** If *f* is differentiable at x = a, then *f* is continuous at x = a.
- **3.** Suppose f' exists. The domain of f' coincides with the domain of f.
- **____4.** If f and g are increasing on (a, b), then fg is increasing on (a, b).
- _____5. If f''(2) = 0, then (2, f(2)) is an inflection point of the curve y = f(x).
- **____6.** If f and g are continuous on [a, b], then $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.
- **7.** Every continuous function has a continuous antiderivative.
- **____8.** Let f be a continuous function on the interval [a,b]. Then there exists a number c in [a,b] such that $f(c) = f_{\text{avg}}$.
- **____9.** If f is a continuous function on [a, a+h], then $\lim_{h\to 0^+} f_{\text{avg}} = f(a)$.
- **_____10.** $\frac{d}{dx}[10^x] = x10^{x-1}$

Part II: Computations [5 points each]

Compute the following limits, derivatives, and integrals. Show enough work. Partial credit will be given when deserved.

11. Compute $\lim_{x\to 3} \frac{x^2 + 2x - 5}{x + 2}$.

12. Compute $\lim_{x\to 2} \frac{x^2 + x - 6}{x - 2}$.

13. Compute the derivative of $g(x) = x^2 \sin(\pi x)$.

14. Compute the derivative of $f(t) = \frac{t^4 - 1}{t^4 + 1}$.

15. Compute the derivative of $f(x) = x^2 \sqrt{x^2 + 1}$.

16. Find the particular antiderivative of $f(x) = \sin x + x$ satisfying F(0) = 2.

17. Compute the integral $\int_0^1 \frac{\left(\arcsin(x)\right)^3}{\sqrt{1-x^2}} dx$.

18. Compute the integral $\int \frac{x}{x^2 + 1} dx$.

19. Which graph best represents the region \Re ?

C.

Which integral represents the volume of the solid $\mathcal S$ using the slicing method?

A.
$$\pi \int_0^9 9 - x \, dx$$

$$\mathbf{C.} \int_0^9 2\pi x \sqrt{9-x} \ dx$$

B.
$$\pi \int_{-3}^{3} ((10 - y^2)^2 - 1) dy$$

D.
$$2\int_0^9 2\pi (x+1)\sqrt{9-x} \ dx$$

21. Which integral represents the volume of the solid ${\mathscr S}$ using the method of cylindrical shells? (Hint: Use symmetry.)

A.
$$\pi \int_{-3}^{3} ((10 - y^2)^2 - 1) dy$$

C.
$$2\int_0^9 2\pi(x+1)\sqrt{9-x}\ dx$$

B.
$$\pi \int_0^9 9 - x \ dx$$

B.
$$\pi \int_0^9 9 - x \, dx$$

D. $\int_0^9 2\pi x \sqrt{9 - x} \, dx$

22. Find y' if $xe^y = y - 1$.

23. Use the <u>limit definition</u> of derivative to compute f'(x). You must use the limit definition to receive credit.

$$f(x) = x^2 + 1$$

24. Compute $\int_0^2 x^3 dx$ using the Riemann sum definition. You must use the definition to receive any credit.

- **25.** Consider the function $f(x) = \frac{1}{\sqrt{x}}$ on the interval [1, 4].
 - a.) Verify that the Mean Value Theorem for Integrals applies to f.
 - *b*.) Find the value *c* guaranteed by the MVT.

26. Find two positive numbers x and y satisfying x + 4y = 100, such that their product is a maximum.

27. Let *f* be continuous on the interval [0, 1]. Prove that $\int_0^1 f(x) dx = \int_0^1 f(1-x) dx.$

This page was intentionally left blank.