Math 243: Calculus II




Midterm Exam: Review Guide


This page contains problems similar to those that will appear on the Midterm Exam.


Part I -- Tuesday, 09 October 2018




1. Evaluate the definite and indefinite integrals.

a.) \(\displaystyle \int x^2e^{2x}\,dx\)

h.) \(\displaystyle \int_0^\pi e^{\cos t} \sin(2 t)\, dt \)

b.) \(\displaystyle \int \arccos(x) \,dx\)

i.) \(\displaystyle \int \tan^3\theta \sec^6\theta\, d\theta \)

c.) \(\displaystyle \int \ln(\sqrt{x}) \,dx\)

j.) \(\displaystyle \int \sin^2 x\cos^2 x\, dx \)

d.) \(\displaystyle \int e^\theta\sin\theta\, d\theta \)

k.) \(\displaystyle \int \frac{x^2}{\sqrt{81 - x^2}} \, dx \)

e.) \(\displaystyle \int_0^{2\pi} t\sin(t)\cos(t)\, dt\)

l.) \(\displaystyle \int_0^7 \sqrt{x^2 + 49}\, dx \)

f.) \(\displaystyle \int \frac{z}{\sqrt{z^2 - 9}} \, dz\)

m.) \(\displaystyle \int \frac{7t - 5}{t + 5} \, dt\)

g.) \(\displaystyle \int \frac{17}{(x - 1)(x + 1)^2}\, dx\)

n.) \(\displaystyle \int \frac{25}{v^3 - 8} \,dv\)

2. Determine whether the improper integrals are convergent or divergent. If convergent, evaluate the integral.

a.) \(\displaystyle \int_8^9 \frac{x}{x-9} \,dx\)

c.) \(\displaystyle \int_1^\infty \frac{1}{t^2} \, dt \)

b.) \(\displaystyle \int_1^\infty \frac{\ln x}{x} \,dx\)

d.) \(\displaystyle \int_0^1 \frac{1}{t^2} \,dt \)




Part II -- 10 October 2018




3. Derive the formulas for \(\tfrac{d}{dx}\big[ \arcsin(x)\big]\) and \(\tfrac{d}{dx}\big[ \arctan(x)\big]\).

4. Derive the formulas for \(y = \sinh^{-1}(x)\) and \(\tfrac{d}{dx}\big[\sinh^{-1}(x)\big]\).

5. Find the area of the region bounded by the hyperbola \(25x^2 - 4y^2 = 100\) and the line \(x = 3\).

6. Compute the area of a lune: the shaded region in the image below.


7. Find the arc length of the curve \(y = \sqrt{2 - x^2}\), \(0 \leq x \leq 1\). Check your answer by using geometry.

8. Find the arc length function for the curve \(y = \arcsin(x) + \sqrt{1 - x^2}\) with starting point \((0,1)\).

9. Find the arc length function for the curve \(f(x) = \ln(\sin x)\), \(0 < x < \pi\), with starting point \(\left(\frac{\pi}{2},0\right)\).

10. Find the exact surface area of the surface obtained by rotating the curve about the \(y\)-axis. \[ y = \sqrt{1 + e^x}\, ,\ \ \ 0\leq x\leq 1 \]

11. Compute the volume and surface area of Gabriel's Horn: the region obtained by rotating the curve \(y = \dfrac{1}{x}\), \(x \geq 1\), about the \(x\)-axis.

Back to main page


Your use of Wichita State University content and this material is subject to our Creative Common License.