Name:

M243: Calculus II (Spring 2018)

Instructor: Justin Ryan

Unit II Exam: Chapters 6 and 7

Read and follow all instructions. You may not use any notes or electronic devices. All you need is a pencil and your brain!

Part I: True/False [2 points each]

Neatly write **T** *if the statement is always true, and* **F** *otherwise.*

- _____1. The integral $\int_1^\infty \frac{1}{\sqrt{x}} dx$ is convergent.
- $\underline{\qquad} 2. \quad \lim_{\theta \to \frac{\pi}{2}^{-}} \frac{1 \cos \theta}{\sin \theta} = \lim_{\theta \to \frac{\pi}{2}^{-}} \tan \theta$
- ______3. Simpson's Rule gives the exact answer for $\int_{-1}^{3} (3x^3 4x^2 + 7x 9) dx$.
- **____4.** If $f(x) \le g(x)$ for all x > 0 and $\int_1^\infty f(x) \, dx$ is convergent, then $\int_1^\infty g(x) \, dx$ is also convergent.
- **_____5.** $\arctan(\tan(\theta)) = \theta \text{ for all } \theta \in \mathbb{R}.$

Part II: Conceptual Problems [10 points each]

Complete all 3 problems in the space provided. Show \underline{enough} work, and write your work in a clear, organized fashion.

6. Derive the formula $\frac{d}{dx} \left[\arctan(x) \right] = \frac{1}{x^2 + 1}$.

7. Write the form of the partial fraction decomposition for the rational function

$$\frac{x^2 - 1}{(x - 3)^2 (x^2 + 2x + 4)}.$$

Do **NOT** solve for the unknown coefficients.

8. You wish to evaluate the integral

$$\int \frac{1}{\sqrt{x^2 - 4x - 21}} \, dx$$

by using a trig substitution. Clearly indicate what substitution you make and write down the new integral. Do ${\bf NOT}$ evaluate the integral.

Part III: Computational Problems [15 points each]

Complete 4 of the 5 problems in the space provided. Show enough work. Clearly mark the one problem that you wish to OMIT.

$$\int \frac{x^2}{x^2 - 4x + 3} \, dx$$

$$\int e^{2x} \sin(x) \, dx$$

11. Determine whether the integral converges or diverges. If it converges, compute its exact value. Be sure to treat the improper integral properly.

$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} \, dx$$

$$\int_0^2 \frac{1}{\sqrt{4t^2 + 16}} \, dt$$

$$\int \sin^2\theta \cos^2\theta \, d\theta$$