Name:	
1.	All solutions of the differential equation $y' = -1 - y^4$ are decreasing functions.
2.	The equation $y' = t + y$ is separable.
3.	The equation $e^t y' = y$ is linear.
4.	The equation $e^t y' = y$ is separable.

____5. The equation $y' + ty = e^y$ is linear.

Part II: Computational Problems [10 points each]

Complete all 5 problems in the space provided. Show enough work, and write your work in a clear, organized fashion.

6. Consider the slope field for the differential equation y' = y(y-2). Identify and sketch the equilibrium solutions, and then sketch 3 non-equilibrium solution curves with distinctly different behavior.

- **7, 8.** Consider the curve given by the function $f(x) = \ln(\cos x)$ on the interval $-\frac{\pi}{2} < x < \frac{\pi}{2}$.
- 7. Set up the integral representing the arc length of the curve y = f(x) on the interval $\left[0, \frac{\pi}{4}\right]$. Do **NOT** evaluate the integral.

8. Set up the integral representing the surface area of the surface obtained by rotating the graph of y = f(x) about the *y*-axis over the interval $0 \le x \le \frac{\pi}{4}$. Do **NOT** evaluate the integral.

9. Find the general solution of differential equation. Be sure to solve for y as a function of t.

$$y' = 3(1+y^2)$$

10. Consider the integral equation

$$y(t) = 9 + \int_0^t 2x \sqrt{y} \, dx.$$

Set up the corresponding initial value problem and find its solution.