| Name: WICHITA STATE M243: Calculus II (Spring 2018) Instructor: Justin Ryan Unit V Exam: Chapter 11 (In class) | | | |--|--|---| | | follow all instructions. You may n
nd your brain! | ot use any notes or electronic devices. All you need i | | _ | C hoice [5 points each]
best answer and write the correspo | onding letter on the line provided. | | 1. | Determine whether the sequent value. | lim $\lim_{n\to\infty} \frac{n\sin n}{n^2+1}$ | | | A. Converges to 1 C. Converges to $\frac{\pi}{2}$ | B. Converges to 0D. Diverges | | 2. | Determine whether the series coverges. | onverges absolutely, converges conditionally, or di- $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$ | | | A. Converges absolutely | B. Converges conditionally | | | C. Diverges | D. Cannot be determined | | 3. | Determine whether the series coverges. | onverges absolutely, converges conditionally, or di- $\sum_{n=0}^{\infty} \frac{9^{n+1}}{10^n}$ | | | A. Converges absolutely | B. Converges conditionally | **D.** Cannot be determined C. Diverges **4.** Find the sum of the series. $$1 - \pi + \frac{\pi^2}{2} - \frac{\pi^3}{6} + \frac{\pi^4}{24} - \frac{\pi^5}{120} + \cdots$$ A. -1 **B.** 0 C. e^{π} **D.** $e^{-\pi}$ **5.** Find the sum of the series. $$1 - \frac{\pi^2}{2} + \frac{\pi^4}{24} - \frac{\pi^6}{720} + - \cdots$$ A. -1 **B.** 0 C. e^{π} - **D.** $e^{-\pi}$ - **____6.** Find the radius of convergence of the power series. $$p(x) = 3 - \frac{3}{2}(x - 5) + \frac{3}{4}(x - 5)^2 - \frac{3}{8}(x - 5)^3 + \frac{3}{16}(x - 5)^4 - \frac{3}{32}(x - 5)^5 + \cdots$$ **A.** $\frac{1}{2}$ **B.** 1 **C.** 2 - **D.** 5 - __7. Find the interval of convergence of the power series. $$p(x) = 3 - \frac{3}{2}(x - 5) + \frac{3}{4}(x - 5)^2 - \frac{3}{8}(x - 5)^3 + \frac{3}{16}(x - 5)^4 - \frac{3}{32}(x - 5)^5 + \cdots$$ A.(3,7) **B.** (-2,2) $\mathbf{C.}(-5,5)$ **D.** (4, 6) **8.** For which test are the hyptheses **NOT** satisfied by the series? (*i.e.*, the test does not apply. $$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$ A. Integral Test **B.** Limit Comparison Test C. Alternating Series Test **D.** Comparison Test **9.** Which test is **inconclusive** when applied to the series? $$\sum_{n=2}^{\infty} \frac{n}{n^2 - 1}$$ A. Integral Test B. Test for Divergence C. Limit Comparison Test D. They're all conclusive **10.** You wish to approximate the series to within one one-thousandth. What should you choose as N to ensure that $R_N < \frac{1}{1000}$? $$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n!}{(2n)!}$$ **A.** 1 **B.** 3 **C.** 5 **D.** 12 ## Written Problems [5 points each] Complete all problems, showing enough work. 11. Consider the MacLaurin series for cosine. What is the maximum error of the 5th partial sum in estimating cos(1)? You may leave your answer as a fraction with factorials if necessary. 12. Use a geometric series to derive a power series for $f(x) = \frac{1}{x^2 - 4x}$ centered at $x_0 = 2$.