Name:				

M243: Calculus II (Spring 2018)

Instructor: Justin Ryan

Unit V Exam: Chapter 11 (Extra Credit)

Complete the following problems on your own paper, showing enough work. This assignment will be counted as extra credit toward your final grade. (Probably about 2–4%.) This assignment is due at the beginning of the final exam on Monday, 7 May 2018.

1. Show that the Maclaurin series of the function

$$f(x) = \frac{x}{1 - x - x^2}$$
 is $f(x) = \sum_{n=1}^{\infty} f_n x^n$

where f_n is the n^{th} Fibonacci number: 1,1,2,3,5,....

Hint: Write

$$\frac{x}{1-x-x^2} = c_0 + c_1 x + c_2 x^2 + \dots,$$

mulitply both sides of the equation by $(1 - x - x^2)$, then compare powers of x.

2. Use the partial fraction decomposition of

$$f(x) = \frac{x}{1 - x - x^2}$$

to find a different form of the Maclaurin series for f. Compare the coefficients to the ones that you found in problem 1 to find a non-recursive formula for the nth Fibonacci number.

3. Find the Taylor series for $f(x) = \ln x$ centered at $x_0 = 1$. Plot the first 5 Taylor polynomials $(T_0, ..., T_5)$ on the same set of axes. [Print this and include it with your submission.] Based on the graphs, what does the radius of convergence appear to be? Compute the radius of convergence explicitly and compare with your guess.

4. The resistivity ρ of a conducting wire is the reciprocal of the conductivity and is measured in units of ohm-meters (Ωm) . The resistivity of a given metal depends on the temperature according to the equation

$$\rho(t) = \rho_{20} e^{\alpha(t-20)} \tag{1}$$

where t is the temperature in ${}^{\circ}C$. α and ρ_{20} are constants that depend on the type of metal of the wire. In practice, when the temperature of the wire is close to $20{}^{\circ}C$, equation (1) is usually replaced by a linear or quadratic function. Find these linear and quadratic approximations. What is the maximum error of each in approximating $\rho(15)$?