Name:_____k

M344: Calculus II (Fall 2018)

Instructor: Justin Ryan

Final Exam

Read and follow all instructions. You may not use any electronic devices. You may use a single two-sided 8.5 by 11 inch page of your own hand-written notes. Each problem is worth 22 points.

1. *a.*) Define a transformation that carries the ellipse $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ to the unit circle $u^2 + v^2 = 1$.

$$T: \begin{cases} N = \frac{x}{3} \\ N = \frac{y}{2} \end{cases} \qquad T: \begin{cases} X = 3u \\ y = 2N \end{cases}$$

b.) Compute the Jacobian, $\left| \frac{\partial(x,y)}{\partial(u,v)} \right|$, of the transformation you found in part *a*.

$$\frac{\Im(x_1y)}{\Im(x_1y)} = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix} \qquad | \qquad \left| \frac{\Im(x_1y)}{\Im(x_1y)} \right| = 6$$

c.) Evaluate the integral $\iint_R \sqrt{4x^2 + 9y^2} \, dA$, where *R* is the ellipse $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$.

$$\iint_{R} \sqrt{(2x)^{2} + (3y)^{2}} dA = \iint_{S} \sqrt{(6u)^{2} + (6ut)^{2}} \cdot 6 dA = 36 \int_{0}^{2\pi} \int_{0}^{1} r^{2} dr d\theta$$
- 6r in polar coords.

$$= 36.2 \pi \cdot \frac{1}{3} = 24 \pi$$

2. *a.*) Give a parametrization of the curve *C* of intersection of the cylinder $x^2 + y^2 = 9$ and the plane z - 2x - 3y = 0 in \mathbb{R}^3 . Clearly state the parameter domain.

$$\begin{cases}
X = 3\cos\theta \\
y = 3\sin\theta
\end{cases}, 0<0 \le 2\pi$$

$$\begin{cases}
Z = 6\cos\theta + 9\sin\theta
\end{cases}$$

b.) Give a parametrization of the surface *S* given by the portion of the plane z - 2x - 3y = 0 inside of the cylinder $x^2 + y^2 = 9$. Clearly state the parameter domain.

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = r \left(2 \cos \theta + 3 \sin \theta \right) \end{cases}, \quad 0 \le r \le 3, \quad 0 \le \theta \le 2\pi$$

c.) Let $\mathbf{F}(x, y, z) = \langle z, y, x \rangle$. Use your favorite method to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where *C* is the curve in part *a*.

By Stokes' Thm,
$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} cw |\vec{F} \cdot d\vec{S}$$

but $cw |\vec{F}| = \langle 0,0,0 \rangle = \vec{0}$, so
 $\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} \vec{0} \cdot d\vec{S} = 0$.

3. Consider the vector field $\mathbf{F}(x, y, z) = \langle e^y - yze^{xy}, -xze^{xy} + xe^y + e^z, ye^z - e^{xy} \rangle$.

a.) Show that **F** is conservative.

$$\begin{aligned} & \text{Curl } \vec{F} = \left\langle e^{\frac{2}{2}} - xe^{xy} - \left(-xe^{xy} + e^{\frac{2}{2}} \right), -ye^{xy} - \left(-ye^{xy} \right), -\frac{2e^{xy}}{2} - xyze^{xy} + e^{y} - \left(e^{y} - ze^{xy} - xyze^{xy} \right) \right\rangle \\ & = \left\langle 0, 0, 0 \right\rangle \end{aligned}$$

b.) Find a potential function for **F**.

$$f = \int e^{4} - y^{2}e^{xy} dx = xe^{4} - \frac{1}{y}y^{2}e^{xy} + C_{1}(y_{1}^{2}) = xe^{4} - 2e^{xy} + C_{1}(y_{1}^{2})$$

$$f = \int -x^{2}e^{xy} + xe^{4} + e^{2} dy = \frac{1}{x}(-x^{2}e^{xy}) + xe^{4} + ye^{2} + C_{2}(x_{1}^{2}) = xe^{4} + ye^{2} - 2e^{xy} + C_{2}(x_{1}^{2})$$

$$f = \int ye^{2} - e^{xy} dz = ye^{2} - 2e^{xy} + G_{3}(x_{1}y)$$

So the potential function is

c.) Find the work done by the vector field **F** on a partical that moves from the point P(1,0,0) to the point Q(0,0,1).

$$W = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \nabla f \cdot d\vec{r} = f(\alpha) - f(\beta)$$

$$= (0 \cdot e^{\alpha} + 0 \cdot e^{\beta} - 1 \cdot e^{\alpha}) - (1 \cdot e^{\alpha} + 0 \cdot e^{\alpha} - 0 \cdot e^{\beta})$$

$$= -1 - 1$$

$$= -\frac{1}{2}$$

4. Let f and g be functions in \mathbb{R}^2 , both of whose second partial derivatives are continuous.

a.) Show that
$$\Delta(fg) = f\Delta(g) + g\Delta(f) + 2(\nabla f) \cdot (\nabla g)$$
.

b.) Recall that $d\mathbf{n} = \langle -dy, dx \rangle$. Show that if $\Delta f = 0$ on a simple closed region D, then

$$\int_{\partial D} (\nabla f) \cdot d\mathbf{n} = 0,$$

where ∂D denotes the positively-oriented boundary curve of the region D.

$$\nabla f = \langle \partial_x f, \partial_y f \rangle$$

$$\nabla f \cdot d\vec{n} = \partial_x f(-dy) + \partial_y f dx$$
so
$$\int \nabla f \cdot d\vec{n} = \int \partial_y f dx - \partial_x f dy$$
By Green's Theorem, this equals
$$\int \int \frac{\partial}{\partial x} (\partial_x f) - \frac{\partial}{\partial y} (\partial_y f) dA = \int \int -\partial_x f - \partial_y f dA = \int \int -\Delta f dA = \int \int -\Delta f dA = 0.$$
by the essemption that $\Delta f = 0$. Thus
$$\int \nabla f \cdot d\vec{n} = 0.$$

5. Consider the vector field $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$.

Use your favorite method to compute the flux, $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where S is the surface of the solid bounded by the upper half sphere $z = 3 + \sqrt{1 - x^2 - y^2}$, the cylinder $x^2 + y^2 = 1$, and the disk $x^2 + y^2 \le 1$, z = 0.

The surface looks like

By the Divergence Thin, Flux $SF\cdot dS = SSS div F dV$.

But the volume can be computed without calculus:

Thus, the flux is

$$F = \iint_{S} \vec{F} \cdot d\vec{S} = 3\left(\frac{1}{3}\pi\right) = \boxed{11\pi}$$

