Name:_____

M344: Calculus III (Fall 2018)

Instructor: Justin Ryan

Final Exam

Read and follow all instructions. You may not use any electronic devices. You may use a single two-sided 8.5 by 11 inch page of your own hand-written notes. Each problem is worth 22 points.

1. *a.*) Define a transformation that carries the ellipse $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ to the unit circle $u^2 + v^2 = 1$.

b.) Compute the Jacobian, $\left| \frac{\partial(x,y)}{\partial(u,v)} \right|$, of the transformation you found in part *a*.

c.) Evaluate the integral $\iint_R \sqrt{4x^2 + 9y^2} \, dA$, where *R* is the ellipse $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$.

2. *a.*) Give a parametrization of the curve *C* of intersection of the cylinder $x^2 + y^2 = 9$ and the plane z - 2x - 3y = 0 in \mathbb{R}^3 . Clearly state the parameter domain.

b.) Give a parametrization of the surface *S* given by the portion of the plane z - 2x - 3y = 0 inside of the cylinder $x^2 + y^2 = 9$. Clearly state the parameter domain.

c.) Let $\mathbf{F}(x, y, z) = \langle z, y, x \rangle$. Use your favorite method to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where *C* is the curve in part *a*.

3.	Consider the vector field $\mathbf{F}(x, y, z) =$	$\langle e^y - vze^{xy} \rangle$	$y, -xze^{xy} + xe^{y}$	$^{y}+e^{z}$, ye^{-}	$z - e^{xy}$

a.) Show that **F** is conservative.

 $\it b$.) Find a potential function for $\it F$.

c.) Find the work done by the vector field **F** on a partical that moves from the point P(1,0,0) to the point Q(0,0,1).

- **4.** Let f and g be functions in \mathbb{R}^2 , both of whose second partial derivatives are continuous.
 - *a.*) Show that $\Delta(fg) = f\Delta(g) + g\Delta(f) + 2(\nabla f) \cdot (\nabla g)$.

b.) Recall that $d\mathbf{n} = \langle -dy, dx \rangle$. Show that if $\Delta f = 0$ on a simple closed region D, then

$$\int_{\partial D} (\nabla f) \cdot d\mathbf{n} = 0,$$

where ∂D denotes the positively-oriented boundary curve of the region D.

5. Consider the vector field $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$.

Use your favorite method to compute the flux, $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where S is the surface of the solid bounded by the upper half sphere $z = 3 + \sqrt{1 - x^2 - y^2}$, the cylinder $x^2 + y^2 = 1$, and the disk $x^2 + y^2 \le 1$, z = 0.

