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Preface

Write Preface here. Philosophy of the problems, book used in class, etc.
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Instructions

Complete all exercises. You may work in groups or independently, depend-
ing on your personal learning taste. Attempt each problem without using a
calculator, and only refer to your calculator (physical or online) if directed
by the problem, or if absolutely necessary. If you get stuck on a problem,
discusI apologize for all of the mistakes in the Good Problems this week. I
have updated everyone’s grade to 5/5. Is it with your group and/or neigh-
boring groups. If the group is still stuck, then your entire group may ask
me for a hint.

Students are expected to be present and working on these Good Prob-
lems in class, during the time allotted by the instructor. Any problems that
are not completed during class time are expected to be completed outside
of class, before the next class meeting.
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1. Vector-Valued Functions

These Good Problems cover material from sections 12.1 – 12.3 of our book.
Topics include an introduction to vector functions and their space curves;
derivatives and integrals of vector functions; and arc length and curvature
of space curves.

1. Consider the vector function r(t) =
〈√

4− t2, e−3t, ln(t+ 1)
〉
.

a.) What is the domain of r?

b.) Evaluate lim
t→0

r(t).

2. Evaluate the limit.

lim
t→1

(
t2 − t
t− 1

i +
√
t+ 8 j +

sin(πt)

ln t
k

)

1



2 Chapter 1. Vector-Valued Functions

3. Recall that a vector function r(t) = 〈x(t), y(t), z(t)〉 is said to be
continuous at the point t = a if and only if lim

t→a
r(t) = r(a).

We proved in class that if the component functions x, y, and z are
each continuous at t = a, then r is continuous at t = a. Prove the
converse: If r is continuous at t = a, then so are each of x, y, and z.

4. Find a parametrization of the space curve defined by the intersection
of the surfaces z = 4x2 + y2 and y = x2 in R3.



3

5. Sketch the curves in R2 and the surfaces R3 defined by the vector
functions. Indicate the direction of increasing t.

a.) r(t) = 〈cos t, sin t〉

b.) r(t) = 〈t2, t〉

6. Sketch the space curves determined by the vector functions.

a.) r(t) = 〈sin t, t, cos t〉

b.) r(t) = t2 i + t j− tk



4 Chapter 1. Vector-Valued Functions

Bezier curves.

Let P0, P1, P2, and P3 be points in R3: Pi = (xi, yi, zi) for i = 0, 1, 2, 3.
Regard each point Pi as the terminal point of a vector Pi, identifying the
ordered triple (xi, yi, zi) with the vector 〈xi, yi, zi〉 in R3. The Bezier curve
defined by these points (equivalently, vectors) is the space curve associated
with the vector function,

B(t) = (1− t)3 P0 + 3(1− t)2tP1 + 3(1− t)t2 P2 + t3 P3, 0 ≤ t ≤ 1.

7. Determine the Bezier curve for the points

P0(0, 1, 2), P1(0, 0, 2), P2(2, 1, 0), and P3(2, 0, 0).

Use a graphing utility to graph the curve. Identify each of the points
and its relationship to the graph.
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8. Set up and simplify the integral that represents the length of the
Bezier curve you found in problem 7. Use a graphing utility or CAS
to estimate the length of the curve. Round your answer to two decimal
places.

9. Let y = f(x) be a twice-differentiable function. Show that the curva-
ture of f is given by

κ(x) =
|f ′′(x)|√

1 + (f ′(x))2
3 .



6 Chapter 1. Vector-Valued Functions

10. Find a formula for the curvature of the curve y = tanx, and use it to
calculate the curvature at the point (π

4
, 1).

11. Two particles travel along the space curves

r1(t) =
〈
t, t2, t3

〉
and r2(u) = 〈1 + 2u, 1 + 6u, 1 + 14u〉 .

Do the particles collide? If not, do their paths intersect?
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12. Consider the vector function r(t) = 〈3 cos(t), 3 sin(t), t〉, 0 ≤ t ≤ 2π.
Compute ṙ(t),

∫
r(t) dt, s(t), and κ(t).



8 Chapter 1. Vector-Valued Functions

13. Find an equation of a parabola that has curvature κ = 4 at the origin.

14. Use your favorite formula for curvature to prove the following state-

ment: The curvature of a circle of radius a is constant, κ =
1

a
.

For this reason, the number 1/κ is referred to as the radius of cur-
vature at each point of a space curve.



2. Physical Applications

These Good Problems cover material related to section 12.3 of our book.
Some of this material is not found in our text, but it is extremely impor-
tant. Please use my notes as a reference. Topics include tangent, normal,
and binormal vectors; curvature and torsion; velocity and acceleration; the
Frenet-Serret formulas; and some applications of these ideas.

1. Consider the function f(x) = x4 − 2x2. Find its curvature function κ
and the osculating circle to the curve at the origin. Use a graphing
utility to graph the curve y = x4 − 2x2, its curvature function κ, and
the osculating circle on the same set of axes.



10 Chapter 2. Physical Applications

2. Find T, N, and B, the curvature κ and the torsion τ of the curve
r(t) = 〈cos t, sin t, ln cos t〉 at the point (1, 0, 0). Also find equations
of the normal and osculating planes to the curve at this point.
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3. Find the curvature and torsion of the curve at the point (0, 1, 0).

r(t) = sinh t i + cosh t j + tk

4. Find the velocity, acceleration, and speed of the particle.

r(t) = et 〈cos t, sin t, t〉



12 Chapter 2. Physical Applications

5. Find the tangential and normal components of the acceleration vector
for the curve

r(t) = t i + t2 j + 3tk.

6. A particle has position function r. If ṙ(t) = c× r(t) for all t, where c
is a constant vector, describe the path of the particle.
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7. Suppose you need to design a smooth transition between parallel
straight sections of a railroad track. Existing track along the neg-
ative x-axis is to be joined to a track along the line y = 1 for x ≥ 1.

a.) Find a polynomial function P of degree 5 such that the function
F defined by

F (x) =


0 if x ≤ 0

P (x) if 0 < x < 1

1 if x ≥ 1

is continuous and has continuous slope and curvature.

b.) Use a graphing utility to draw the graph of F and sketch it below.



14 Chapter 2. Physical Applications

8. The position function of a spaceship is

r(t) = (3 + t) i + (2 + ln t) j +

(
7− 4

t2 + 1

)
k

and the coordinates of a space station are (6, 4, 9). The captain wants
the spaceship to coast into the space station. When should the engines
be turned off?
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9. A rocket burning its onboard fuel while moving through space has
velocity v(t) and mass m(t) at time t. If the exhaust gases escape with
velocity ve relative to the rocket, it can be deduced from Newton’s
Second Law of Motion that

m
dv

dt
=
dm

dt
ve.

a.) Show that v(t) = v(0)− ln
(
m(0)
m(t)

)
ve.

b.) For the rocket to accelerate in a straight line from rest to twice
the speed of its own exhaust gases, what fraction of its initial mass
would the rocket have to burn as fuel?





3. Functions of Several Variables

These Good Problems cover material from sections 13.1 and 13.2 of our
book. Topics include functions of two variables, their contour maps, and
limits.

1. Match the function with its graph.

a.) f(x, y) = |x|+ |y| b.) f(x, y) = |xy|

c.) f(x, y) =
1

1 + x2 + y2
d.) f(x, y) = (x2 − y2)2

e.) f(x, y) = (x− y)2 f.) f(x, y) = sin(|x|+ |y|)



18 Chapter 3. Functions of Several Variables

2. Find and sketch the domain of the function

F (x, y) = arcsin(x2 + y2 − 2).

3. Find and sketch the domain of the function

G(x, y) = ln(9− x2 − 9y2).

4. Find and sketch the domain of the function

f(x, y, z) =
√

1− x2 − y2 − z2.
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5. Two contour maps are given. One is for a function f whose graph
is a cone. The other is for a function g whose graph is a paraboloid.
Which is which, and why?

I. II.

6. A thin metal plate, located in the xy-plane, has temperature T (x, y) at
the point (x, y). The level curves of T are called isothermals because
at all points on such a curve the temperature is the same. Sketch
some isothermals if the temperature function is given by

T (x, y) =
100

1 + x2 + 2y2
.



20 Chapter 3. Functions of Several Variables

7. Use a computer to investigate the family of functions

f(x, y) = ecx
2+y2 .

How does the shape of the graph depend on c?

8. Show that the limit does not exist, lim
(x,y)→(0,0)

x4 − 4y2

x2 + 2y2
.

9. Use polar coordinates to find the limit. (You may assume the limit
exists.)

lim
(x,y)→(0,0)

(x2 + y2) ln(x2 + y2)
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10. Use a computer graph of the function to explain why the limit does
not exist.

lim
(x,y)→(0,0)

2x2 + 3xy + 4y2

3x2 + 5y2

11. Use the ε-δ definition of limit to prove that the limit exists.

lim
(x,y)→(0,0)

x2y

2x2 + 2y2
= 0





4. Partial Derivatives, Tangent Planes,
Review

These Good Problems cover concepts studied in sections 13.3 and 13.4 of
our text, then review concepts from the entire semester as preparation for
the semester’s first midterm exam.

1. a.) Sketch the graph of the function F (x, y) =
√

1− x2 − y2.

b.) Plot the point p(1
4
, 1
2
), in the domain of F , and the point

(1
4
, 1
2
, F (p)) on the surface.

c.) Sketch the tangent lines to the surface in the planes x = 1
4

and
y = 1

2
. Describe the partial derivatives ∂yF (p) and ∂xF (p) in terms

of these lines.

d.) Sketch the tangent plane to the surface at the point (1
4
, 1
2
, F (p)).



24 Chapter 4. Partial Derivatives, Tangent Planes, Review

2. Calculate the partial derivatives ∂xF and ∂yF for the function

F (x, y) =
√

1− x2 − y2. Then use them to find an equation of the
tangent plane to the surface at the point (1

4
, 1
2
).

3. Compute the partial derivatives ∂xz and ∂yz for the function
z = sin(xy) + yex.
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4. Find an equation of the tangent plane to the surface

x4 + y4 + z4 = 3x2y2z2

at the point (1, 1, 1).

5. Find the differential dT of the function T (u, v, w) =
v

1 + uvw
.



26 Chapter 4. Partial Derivatives, Tangent Planes, Review

6. Use differentials to estimate the amount of tin in a closed tin can with
diameter 8 cm and height 12 cm if the tin is 0.04 cm thick.

7. Use differentials to approximate the value of f at the point (5.01, 4.02).

f(x, y) =
√
x2 − y2
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8. Compute all first partial derivatives of the functions. Show enough
work.

a.) f(x, y) =
1√

9− x2 − y2

b.) g(u, v) = uesin(uv)

c.) F (x, y) = ln(x2 + arctan y)

d.) z = arcsin(x+ y)

e.) T (x, y) = e−x
2−y2

f.) z = y5 sin(lnx)



28 Chapter 4. Partial Derivatives, Tangent Planes, Review

9. Let r be a smooth vector function in R3 such that r̈ exists and r̈ 6= 0.
Show that Ṫ(t) ⊥ T(t) for all values of t in the domain of r.

10. Prove that the curvature of a circle of radius a is constant, κ = 1
a
.

11. Let r be a smooth space curve such that r̈ exists and r̈ 6= 0. Prove
that B(t) is a unit vector for all t in the domain of r.
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12. Find an equation of the osculating circle to the plane curve x = 1−y2
at the point (1, 0). Show enough work.

13. At what point(s) does the curve y = x4 − 6x2 have maximum curva-
ture? Show enough work to justify your answer.



30 Chapter 4. Partial Derivatives, Tangent Planes, Review

14. Consider the space curve r(t) = 〈− cos t,−t, sin t〉.

a.) Find the arc length function s = s(t) starting at t = 0 and in the
positive t-direction.

b.) Reparametrize r with respect to arc length.

c.) Find the curvature κ(s) of r.
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15. Consider the function f(x, y) = ln(9− x2 − y2).

a.) State and sketch the domain of f .

b.) Find ∂xf , ∂yf , ∂xyf , and ∂yxf .

16. Find an vector equation of the tangent line to the surface f(x, y) =
2x2 − y2 at the point (1, 1, 1) that is parallel to the yz-plane. Show
enough work.



32 Chapter 4. Partial Derivatives, Tangent Planes, Review

17. Find the unit tangent, unit normal, and unit binormal vectors (T, N,
and B) to the curve r(t) = 〈cos t, t,− sin t〉 at the point p(0, π

2
,−1).
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18. Consider the function f(x, y) =
√
x2 + y2 at the point p(3, 4).

a.) Find the linearization Lpf(x, y) of f at p.

b.) Find the differential dfp at p.

c.) Use either the linearization or the differential to estimate the value
of
√

3.012 + 3.992. Leave your answer as a reduced fraction.



34 Chapter 4. Partial Derivatives, Tangent Planes, Review

19. Find an equation of the normal plane to the space curve r(t) =
〈et, et cos t, et sin t〉 at the point p(1, 1, 0).

20. Find the tangential and normal components of acceleration for the
space curve r(t) = 3 cos t i− 4 sin t j + 359 k.
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Some Comments

The review portion of these Good Problems is not meant the be compre-
hensive. You should also study past Good Problems and Recommended
Exercises.

The exam will be structured as follows. There will be 5 True/False questions
and 5 “Fill in the Blank” questions, each worth 1 point each. Then there
will be 14 Multiple Choice questions worth 5 points each. Finally, there will
be 5 Short Answer questions worth 5 points each, of which you will choose
to complete 4. The Multiple Choice questions are all or nothing (no partial
credit), but partial credit will be possible on the Short Answer questions.

You will not be allowed to use a calculator or any other electronic device
on the exam. You will be allowed to use a single 3× 5 in2 note card of your
own hand-written notes. If the note card is too big, or if the notes are not
written by hand, then you will not be allowed to use the note card on the
exam.

You’ll also need to know...

Definitions!

I won’t ask you to state any definitions word-for-word, but I will expect you
to know them. Definitions are the most important part of this course. If we
don’t know what the terms mean, then there is no chance we can properly
apply the terms to solve problems.





5. Chain Rule, Directional Derivatives

These Good Problems cover material from sections 13.8 and 13.5 of our
book. Topics include the chain rule, the gradient, and directional deriva-
tives.

1. Suppose f = f(x, y), x = x(u, v, w), y = y(u, v, w), and u = u(t),
v = v(t), w = w(t). Write out df

dt
in Leibniz notation.

2. Let w = xy+ yz+ zx where x = r cos θ, y = r sin θ, and z = rθ. Find
∂w
∂r

and ∂w
∂θ

at (r, θ) = (2, π
2
).

37



38 Chapter 5. Chain Rule, Directional Derivatives

3. Use the formulas for implicit differentiation derived in the lecture to
compute ∂z/∂x and ∂z/∂y for x2 + 2y2 + 3z2 = 1.

4. Use the formulas for implicit differentiation derived in the lecture to
compute ∂z/∂x and ∂z/∂y for yz + x ln y = z2.



39

5. A function is called homogeneous of degree n if it satisfies the equation
f(tx, ty) = tnf(x, y) for all t, where n is a positive integer and f has
continuous second-order partial derivatives.

a.) Verify that f(x, y) = x2y + 2xy2 + 5y3 is homogeneous of degree
3.

b.) Show that if f is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y).

[Hint: Use the Chain Rule to differentiate f(tx, ty) with respect to t.]



40 Chapter 5. Chain Rule, Directional Derivatives

6. Find the gradient ∇f , evaluate ∇f(p), and find the rate of change of
f at p in the direction of the vector u.

f(x, y) =
y2

x
, p(1, 2), u =

1

3
(2 i +

√
5 j)

7. Find the directional derivative of the function f(x, y) = ex sin y at the
point p(0, π

3
) in the direction of the vector v = 〈−6, 8〉.
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8. Find the directional derivative of the function f(x, y) =
√
xy at the

point p(2, 8) in the direction of the point q(5, 4).

9. Find the maximum rate of change of f(x, y) = sin(xy) at the point
(1, 0) and the direction in which it occurs.
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10. Find all points at which the direction of fastest change of the function
f(x, y) = x2 + y2 − 2x− 4y is i + j.

11. Suppose that over a certain region of space the electrical potential V is
given by V (x, y, z) = 5x2− 3xy+xyz. (a.) Find the rate of change of
the potential at p(3, 4, 5) in the direction of the vector v = i + j− k.
(b.) In which direction does V change the most rapidly at p? (c.)
What is the maximum rate of change at p?
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12. The second directional derivative of f(x, y) is

D2
uf(x, y) = Du [Duf(x, y)] .

If f(x, y) = x3 + 5x2y + y3 and u =
〈
3
5
, 4
5

〉
, calculate D2

uf(2, 1).

13. Let f be a smooth function at a point p, u =
〈
3
5
, 4
5

〉
, v =

〈
4
5
,−3

5

〉
,

and suppose Duf(p) = 2 and Dvf(p) = 3. Find ∇f(p).





6. Optimization and Lagrange
Multipliers

These Good Problems cover material from sections 13.6 and 13.7 of our
book.

1. Suppose (1, 1) is a critical point of a function f with continuous second
derivatives. In each case below, what can you say about f?

a.) ∂xxf(1, 1) = 4, ∂xyf(1, 1) = 1, and ∂yyf(1, 1) = 2

b.) ∂xxf(1, 1) = 4, ∂xyf(1, 1) = 3, and ∂yyf(1, 1) = 2

2. Use the level curves in the figure to predict the location of the critical
points of f(x, y) = 3x − x3 − 2y2 + y4 and whether f has a saddle
point or a local minimum or maximum at each of those points. Use a
graphing utility to plot the graph of the function, and compare with
the contour map.

45



46 Chapter 6. Optimization and Lagrange Multipliers

3. For functions of one variable it is impossible for a continuous function
to have two local maxima and no local minimum. But for functions
of two variables such functions do exist. Show that the function

f(x, y) = −(x2 − 1)2 − (x2y − x− 1)2

has only two critical points, but has local maxima at both points.
Then use a graphing utility to graph the function on a domain that
shows both points to see how this is possible.
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4. If a function of one variable is continuous on an interval and has
only one critical point, then a local maximum must be an absolute
maximum. But this is not true for functions of two variables. Show
that the function

f(x, y) = 3xey − x3 − e3y

has exactly one critical point, and that f has a local maximum there
that is not an absolute maximum. Then use a graphing utility to
graph the function on a domain that shows how this is possible.



48 Chapter 6. Optimization and Lagrange Multipliers

5. Use the graph and contour plot to estimate the local maxima, local
minima, and saddle points (if they exist) of the function

f(x, y) = xye−x
2−y2

then use Calculus to find these values precisely.
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6. Find the dimensions of the rectangular box with largest volume if the
total surface area is given to be 64 cm2.

7. Find three positive numbers x, y, z whose sum is 100 such that xy2z3

is a maximum.
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8. Use Lagrange multipliers to find the maximum and minimum values
(if they exist) of the function

f(x, y) = x2 + y2

subject to the constraint xy = 1.
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9. Find the extreme values of the function

f(x, y) = 2x2 + 3y2 − 4x− 5

on the region x2 + y2 ≤ 16.

[Hint: Use the gradient method on the inside and Lagrange multipliers
on the boundary.]



52 Chapter 6. Optimization and Lagrange Multipliers

10. Use Lagrange multipliers to prove that the rectangle with maximum
area that has a given perimeter p is a square.



7. Double Integrals

This week’s Good Problems cover material from sections 14.1 and 14.2 of
our book. Topics include the integration of functions of two variables over
regions in the xy-plane.

1. Evaluate the double integrals by first identifying them as the volume
of solids.

a.)

∫∫
R

3 dA, R = {(x, y) | −2 ≤ x ≤ 2, 1 ≤ y ≤ 6}

b.)

∫∫
R

(5− x) dA, R = {(x, y) | 0 ≤ x ≤ 5, 0 ≤ y ≤ 3}



54 Chapter 7. Double Integrals

2. The integral
∫∫
R

√
9− y2 dA, where R = [0, 4] × [0, 2] represents the

volume of a solid. Sketch the solid.

3. Find the volume of the solid that lies under the hyperbolic paraboloid
z = 4 + x2 − y2 and above the square R = [−1, 1]× [0, 2].
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4. Calculate the iterated integrals.

a.)

∫ 3

1

∫ 1

0

(1 + 4xy) dx dy

b.)

∫ 2

0

∫ π
2

0

x sin y dy dx

c.)

∫ 1

0

∫ 2

1

xex

y
dy dx

d.)

∫ 1

0

∫ 1

0

xy
√
x2 + y2 dy dx



56 Chapter 7. Double Integrals

5. Calculate the double integrals.

a.)

∫∫
R

xy2

x2 + 1
dA, R = {(x, y) | 0 ≤ x ≤ 1, −3 ≤ y ≤ 3}

b.)

∫∫
R

x sin(x+ y) dA, R =
[
0, π

6

]
×
[
0, π

3

]

c.)

∫∫
R

x

1 + xy
dA, R = [0, 1]× [0, 1]
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6. The average value of a function f over a rectangle R is defined to be

favg =
1

Area(R)

∫∫
R

f(x, y) dA.

Find the average value of f(x, y) = x2y where R has vertices (−1, 0),
(−1, 5), (1, 5), and (1, 0).

7. In what way are Fubini’s Theorem and Clairaut’s Theorem similar?
If f(x, y) is continuous on the rectangle [a, b]× [c, d] and

g(x, y) =

∫ x

a

∫ y

c

f(u, v) du dv

for a < x < b and c < y < d. Show that ∂x∂yg = ∂y∂xg = f(x, y).



58 Chapter 7. Double Integrals

8. Evaluate the double integral ∫∫
D

xy2 dA

where D is the region enclosed by the curves x = 0 and x =
√

1− y2.

9. Find the volume of the solid bounded by the cylinder y2 + z2 = 4 and
the planes x = 2y, x = 0, and z = 0 in the first octant.
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10. Express D as a union of a type I and type II region, then evaluate the
integral ∫∫

D

xy dA

11. Evaluate the integral by reversing the order of integration.∫ 1

0

∫ 1

√
y

√
x3 + 1 dx dy





8. Change of Coordinates in Double
Integrals

This week’s Good Problems cover material from sections 14.8 and 14.3 of
our book. Topics include change of variables in double integrals, Jacobians,
linear transformations, and polar coordinates.

1. Let S = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1} be a square in the uv-plane.
Sketch the image of S under the transformation

T : (u, v) 7→ (x, y) =
(
v, u(1 + v2)

)
.

Compute the Jacobian of T .



62 Chapter 8. Change of Coordinates in Double Integrals

2. A polar rectangle is a portion of an annulus defined by

R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β} .

Suppose we partition the region R into m×n sub-regions as indicated
in the figure.

Use elementary geometry techniques to show that the infinitesimal
change in area ∆Aij of the sub-region Rij is

∆Aij = r∗i∆ri∆θj.

Use this information to write the Riemann sum definition of the double
integral ∫∫

R

f(r, θ) dA.

What happens to ∆Aij in the limit?
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3. Evaluate the integral by making an appropriate change of coordinates.∫∫
R

(x+ y)ex
2−y2 dA

where R is the rectangle enclosed by the lines x − y = 0, x − y = 2,
x+ y = 0, and x+ y = 3.



Use this page to show your work for GP 8.3
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4. Evaluate the integral by making an appropriate change of coordinates.∫∫
R

cos

(
y − x
y + x

)
dA

where R is the trapezoid with vertices (1, 0), (2, 0), (0, 2), and (0, 1).



Use this page to show your work for GP 8.4
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5. Evaluate the integral by making an appropriate change of coordinates.∫∫
R

sin(9x2 + 4y2) dA

where R is the region in the first quadrant bounded by the ellipse
9x2 + 4y2 = 1.



Use this page to show your work for GP 8.5
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6. Use polar coordinates to combine the sum∫ 1

1√
2

∫ x

√
1−x2

xy dydx+

∫ √2
1

∫ x

0

xy dydx+

∫ 2

√
2

∫ √4−x2
0

xy dydx

into a single integral, then evaluate the integral.
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7. Let f be continuous on [0, 1] and let R be the triangular region with
vertices (0, 0), (1, 0), and (0, 1). Show that∫∫

R

f(x+ y) dA =

∫ 1

0

u f(u) du.

8. Compute ∫∫
R

1

1 + (x+ y)2
dA

where R is the triangular region with vertices (0, 0), (1, 0), and (0, 1).
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9. (a.) Define the improper integral

I =

∫∫
R2

e−(x
2+y2) dA = lim

a→∞

∫∫
Da

e−(x
2+y2) dA

where Da is the disk with radius a centered at the origin. Show that
I = π.

(b.) Equivalently, we may define

I =

∫∫
R2

e−(x
2+y2) dA = lim

a→∞

∫∫
Sa

e−(x
2+y2) dA.

where Sa is the square with vertices (±a,±a). Show that

I =

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy.

(c.) Deduce that

∫ ∞
−∞

e−x
2

dx =
√
π.

(d.) Use the change of coordinates u =
√

2x to show that∫ ∞
−∞

e−
x2

2 dx =
√

2π .

This is a fundamental result in statistics and probability (area under
a normal curve).



Use this page to show your work for GP 8.9



9. Triple Integrals

This week’s Good Problems cover material from sections 14.5, 14.6, and
14.7 of our book. Topics include change of variables in triple integrals in
rectangular, cylindrical, and spherical coordinates.

1. Work out the details to show that dV = ρ2 sinϕdρdθdϕ in spherical
coordinates (i.e., compute the Jacobian).

2. Sketch the domain of the triple integral, then use an appropriate co-
ordinate system to evaluate the integral.∫ 2

−2

∫ √4−y2

0

∫ √4−x2−y2

−
√

4−x2−y2
y2
√
x2 + y2 + z2 dz dx dy
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3. Sketch the solid whose volume is given by the iterated integral, then
evaluate the integral. ∫ 1

0

∫ 1−x

0

∫ 2−2z

0

dy dz dx

4. Sketch the domain, then write five other iterated integrals that are
equal to the given iterated integral.∫ 1

0

∫ x2

0

∫ y

0

f(x, y, z) dz dy dx
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5. Evaluate the integral by using an appropriate coordinate system.∫ 3

−3

∫ √9−x2
0

∫ 9−x2−y2

0

√
x2 + y2 dz dy dx

6. Sketch the solid whose volume is given by the integral, then evaluate
the integral. ∫ π

2

0

∫ 2

0

∫ 9−r2

0

r dz dr dθ
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7. The surfaces ρ = 1 + 1
5

sinmθ sinnϕ have been used as models for tu-
mors. Use a computer algebra system [CAS] (e.g., Wolfram—Alpha)
to graph the “bumpy sphere” with m = 6 and n = 5. Then use the
CAS to compute the volume it encloses.

8. Set up a triple integral in spherical coordinates to compute the volume
of the region shown, then evaluate the integral.



10. Vector Fields and Path Integrals

This week’s Good Problems cover material from sections 15.1 and 15.3 of
our book. Topics include vector fields and path integrals (known as “line”
integrals in the book and in other areas of math, but this name is deceiving).

1. Sketch (some of) the vector field F(x, y) = 1
2
(i + j).

2. Sketch (some of) the vector field F(x, y) =

〈
y√

x2 + y2
,
−x√
x2 + y2

〉
.
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3. Consider the vector field F(x, y) = (y2 − 2xy)i + (3xy − 6x2)j.

Describe the appearance by finding the set of points (x, y) satisfying
F(x, y) = 0.

4. Let x = 〈x, y〉, r = ‖x‖, and F(x) = (r2 − 2r)x. Use a CAS (such
as Wolfram|Alpha) to plot the vector field on various domains, then
describe its appearance by finding the points where F(x) = 0.
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5. A particle moves in a velocity field V(x, y) = 〈x2, x + y2〉. If it is at
position (2, 1) at time t = 3, estimate its location at time t = 3.01.

[Hint: Use the velocity vector at t = 3 to write a linear approximation
of the position function.]

6. The flow lines (or stream lines) of a vector field F are the paths
followed by a particle whose velocity field is the given vector field:
γ(t) = 〈x(t), y(t)〉 such that γ̇(t) = F(x(t), y(t)). Thus a vector field
is tangent to its flow lines.

Find the flow line of the vector field F(x, y) = xi−yj passing through
the point (1, 1).
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7. Evaluate the path integral

∫
C

xy4 ds where C is the right half of the

circle x2 + y2 = 16.

8. Evaluate

∫
C

2x + 9z ds where C is the path parametrized by r(t) =

〈t, t2, t3〉, 0 ≤ t ≤ 1.
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9. Evaluate the path integral

∫
C

F · dr where F(x, y, z) = 〈z, y,−x〉 and

r(t) = 〈t, sin t, cos t〉, 0 ≤ t ≤ π.

10. Use a CAS to plot the vector field F(x, y) = (x − y) i + xy j and the
curve C : x2 + y2 = 4 traversed clockwise from (2, 0) to (−2, 0) on the
same set of axes.

Evaluate

∫
C

F · dr.





11. Path Integrals and Green’s
Theorem

This week’s Good Problems cover material from sections 15.4 and 15.6 of
our book. Topics include the Fundamental Theorem for path integrals and
Green’s Theorem.

1. Prove the fundamental theorem for path integrals:

Let F be a conservative vector field along a smooth path C, and r(t),
a ≤ t ≤ b, any parametrization. If F is continuous along C, then∫

C

F · dr =

∫
C

∇f · dr = f(r(b))− f(r(a)).
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2. Use Clairaut’s Theorem to prove:

If F(x, y) = P (x, y)i +Q(x, y)j is a conservative vector field, where P
and Q have continuous first-order partial derivatives on a domain D,
then

∂P

∂y
=
∂Q

∂x

throughout D.

3. Use Green’s Theorem to prove:

Let F(x, y) = P (x, y)i +Q(x, y)j be a vector field on an open, simply
connected region D. Suppose that P and Q have continuous first-order
partial derivatives and

∂P

∂y
=
∂Q

∂x

throughout D; then F is conservative.
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Conservation of Energy

Newton’s Second Law says that F = ma. Remembering that v(t) = ṙ(t)
and a(t) = r̈(t), we get a second order differential equation (or SODE):

F(r(t)) = mr̈(t).

Let C be a path defined by the parametrized curve r(t), t ∈ [a, b]. Further-
more, let r(a) = A and r(b) = B.

4. Use this and the fact that kinetic energy is given by K(r(t)) =
1
2
m ‖v(t)‖2 to show that

W =

∫
C

F · dr = K(B)−K(A).

Suppose that F is a conservative vector field; i.e., F = ∇f . The poten-
tial energy of an object at a point (x, y, z) is defined to be P (x, y, z) =
−f(x, y, z) (hence the name potential function). Therefore F = −∇P .

5. Show that
P (A) +K(A) = P (B) +K(B).

This is called the Law of Conservation of Energy.
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6. Find the conservative vector field determined by the potential function
f(x, y) = x tan(x)− x2 sec(y).

7. Determine whether the vector field is conservative. If so, find its
potential function.

F(x, y) =

〈
2

2x+ 3y
,

3

2x+ 3y
+ 3y2

〉
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8. Compute∫
C

(
3y + 12x arctan(x2 − 9)

)
dx−

(
9 arcsin y√

4− y2
− 6x

)
dy

where C is the unit circle x2 + y2 = 1 traversed counter-clockwise.

9. Let F(x, y) = 〈x2 + y2, x2 − y2〉. Compute∫
C

F · dr

where C is the square with vertices (−1,−1), (1,−1), (1, 1), and
(−1, 1), oriented in this order.
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One application of Green’s Theorem that we talked about in class was that
it can be used to calculate the area of an enclosed region by computing a
path integral around the boundary of the region. There are many different
formulas that can be used to do this, but one of them is

Area(D) =

∫∫
D

1 dA =

∫
∂D

x dy.

This formula can be used to show (do it!) that the area of a triangle
with vertices (x1, y1), (x2, y2), and (x3, y3), ordered in positive (counter-
clockwise) orientation, is given by

Area(∆) =
1

2
[x1y2 + x2y3 + x3y1 − x2y1 − x3y2 − x1y3] .

s
(x1, y1)

s
(x2, y2)

��
��

��
��

��
�

s(x3, y3)

Z
Z
Z

Z
Z
Z

ZZ

�
�
�
�
�
�
�
�
�

This is called the Shoelace Formula for area, and can be extended to poly-
gons with n vertices mutatis mutandis.

10. Use the shoelace formula to find the area of the triangle with vertices
(0, 0), (2, 5), and (6, 2).


