
6. Optimization and Lagrange

Multipliers

These Good Problems cover material from sections 13.6 and 13.7 of our
book.

1. Suppose (1, 1) is a critical point of a function f with continuous second
derivatives. In each case below, what can you say about f?

a.) ∂xxf(1, 1) = 4, ∂xyf(1, 1) = 1, and ∂yyf(1, 1) = 2

b.) ∂xxf(1, 1) = 4, ∂xyf(1, 1) = 3, and ∂yyf(1, 1) = 2

2. Use the level curves in the figure to predict the location of the critical
points of f(x, y) = 3x − x3 − 2y2 + y4 and whether f has a saddle
point or a local minimum or maximum at each of those points. Use a
graphing utility to plot the graph of the function, and compare with
the contour map.
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3. For functions of one variable it is impossible for a continuous function
to have two local maxima and no local minimum. But for functions
of two variables such functions do exist. Show that the function

f(x, y) = −(x2
− 1)2 − (x2y − x− 1)2

has only two critical points, but has local maxima at both points.
Then use a graphing utility to graph the function on a domain that
shows both points to see how this is possible.
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4. If a function of one variable is continuous on an interval and has
only one critical point, then a local maximum must be an absolute
maximum. But this is not true for functions of two variables. Show
that the function

f(x, y) = 3xey − x3
− e3y

has exactly one critical point, and that f has a local maximum there
that is not an absolute maximum. Then use a graphing utility to
graph the function on a domain that shows how this is possible.
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5. Use the graph and contour plot to estimate the local maxima, local
minima, and saddle points (if they exist) of the function

f(x, y) = xye−x
2
−y

2

then use Calculus to find these values precisely.
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6. Find the dimensions of the rectangular box with largest volume if the
total surface area is given to be 64 cm2.

7. Find three positive numbers x, y, z whose sum is 100 such that xy2z3

is a maximum.
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8. Use Lagrange multipliers to find the maximum and minimum values
(if they exist) of the function

f(x, y) = x2 + y2

subject to the constraint xy = 1.
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9. Find the extreme values of the function

f(x, y) = 2x2 + 3y2 − 4x− 5

on the region x2 + y2 ≤ 16.

[Hint: Use the gradient method on the inside and Lagrange multipliers
on the boundary.]
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10. Use Lagrange multipliers to prove that the rectangle with maximum
area that has a given perimeter p is a square.


