Name:	
M344: Calculus III (Su.19)	
Midterm Exam	
Chanters 13 and 14	

Instructions. Complete all problems on this paper, showing enough work. You may use one 3×5 in² card of your own hand-written notes. You may not use any electronic devices.

- **1–5. True/False** [4 points each] Write a **T** on the line if the statement is always true, and **F** otherwise. If you determine that the statement is false, you must give justification in the space provided to receive credit.
- _____1. Suppose f is a twice continuously differentiable function. The curvature is 0 at every inflection point of the graph of y = f(x).
- **2.** Different parametrizations of the same curve result in identical tangent vectors at a given point on the curve.
- _______3. Let f be a function of (x, y); then $\lim_{(x,y)\to(2,5)} f(x,y) = f(2,5)$.
- **____4.** Let $\mathbf{k} = \langle 0, 0, 1 \rangle$, and f be a function of (x, y, z); then $D_{\mathbf{k}} f(x, y, z) = \partial_z f(x, y, z)$.
- _____5. Let $f(x, y) = \sin x + \sin y$. Then $|D_{\mathbf{u}} f(x, y)| \le \sqrt{2}$ for all points (x, y) and all unit vectors \mathbf{u} in \mathbb{R}^2 .

6–13. Multiple Choice [5 points each] Write the letter corresponding to the best answer on the line provided.

______6. Let
$$f(x, y) = \ln(\sin^2(x) + \cos^2(y))$$
. Compute $\frac{\partial f}{\partial x}$.

$$\mathbf{A.} \ \frac{2\sin x \cos x}{\sin^2 x + \cos^2 y}$$

$$\mathbf{B.} \ \frac{1}{2\sin x \cos x}$$

C.
$$\ln(2\sin x \cos x)$$

$$\mathbf{D.} \ \frac{2\cos x}{\sin x + \cos^2 y}$$

A.
$$\frac{x^2y}{3z^2}$$

B.
$$\frac{2xy}{z^4}$$

C.
$$\frac{1}{z^3}$$

D.
$$\frac{-3x^2y}{z^4}$$

____8. Let
$$z = x^2 \sin(xy)$$
. Compute dz .

A.
$$2x\sin(y)dxdy$$

B.
$$(2xy\sin(xy) - x^2\cos(y))dx + x^2\sin(x)dy$$

C.
$$(2x-(x+y)\cos(xy))dxdy$$

D.
$$(2x\sin(xy) - x^2y\cos(xy))dx - x^3\cos(xy)dy$$

____9. Let
$$f(x, y) = (x-1)^2 - 3(y-2)^2$$
. Find the linearization of f at the point $P(3,2)$.

A.
$$L(x, y) = 4 + 4x + y$$

B.
$$L(x, y) = 4 + 4(x - 3)$$

C.
$$L(x, y) = 4(x-3)$$

D.
$$L(x, y) = 4 + 2(x - 1)(x - 3) - 6(y - 2)^2$$

10. Let $f(x, y) = (x - 1)^2 - 3(y - 2)^2$. Find a formula for the directional derivative, $D_{\mathbf{v}}f(x,y)$, where $\mathbf{v} = \langle -12,5 \rangle$.

A.
$$-\frac{24}{13}(x-1) - \frac{30}{13}(y-2)$$

B.
$$-\frac{12}{13}(x-1) - \frac{15}{13}(y-2)$$

C.
$$-24(x-1)-30(y-2)$$

D.
$$-12(x-1)^2 - 15(y-2)^2$$

11. Let $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$ be a smooth vector function. Which of the following formulas is <u>not</u> a valid formula for the curvature of r?

$$\mathbf{A.} \ \kappa = \left\| \frac{d\mathbf{T}}{ds} \right\|$$

$$\mathbf{B.} \ \kappa = \frac{\|\dot{\mathbf{T}}\|}{\|\dot{\mathbf{r}}\|}$$

$$\mathbf{C.} \ \kappa = \frac{|\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}|}{\|\dot{\mathbf{r}}\|^3}$$

B.
$$\kappa = \frac{\|\dot{\mathbf{T}}\|}{\|\dot{\mathbf{r}}\|}$$
D. $\kappa = \frac{\|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\|}{\|\dot{\mathbf{r}}\|^3}$

- **12–13.** Consider the function $f(x, y) = 5 + \sqrt{9 x^2 y^2}$.
- **12.** What is the range of f?

A.
$$[-3,3] \times [-3,3]$$

13. Choose the graph that best represents the level curves of f.

14. [30 points] Let \mathbf{r} be a smooth vector function parametrizing a space curve C. Prove that the unit tangent vector field \mathbf{T} on C satisfies $\mathbf{T} \perp \dot{\mathbf{T}}$ at all points along C.

15. [30 points] Let f be a differentiable function of two variables, and let P be a point in its domain. Prove that the directional derivative $D_{\mathbf{u}}f(P)$ is maximum when \mathbf{u} is in the same direction as $\nabla f(P)$, and $\max_{\|\mathbf{u}\|=1}D_{\mathbf{u}}f(P)=\|\nabla f(P)\|$.

16. [40 points] Find the maximum and minimum values of the function $f(x, y) = x^2 - y^2$ subject to the constraint $x^2 + 4y^2 = 16$. Leave your answers in exact form (no decimals).

17. [40 points] Find an equation of the osculating circle to the curve $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x$ at x = 2.

