Name:____

M344: Calculus III (Su.19)

Good Problems 1 Sections 13.1–13.3

Instructions. Complete all problems, showing enough work. All work must be done on this paper. You may not use any notes or electronic devices. All you need is a pencil and your brain.

- 1. Consider the vector function $\mathbf{r}(t) = \left\langle \ln(2-t), \frac{t}{\sqrt{9-t^2}}, 2^t \right\rangle$.
 - *a.*) What is the domain of **r**?
 - *b.*) Compute the derivative, $\dot{\mathbf{r}}(t)$.

c.) Compute the antiderivative, $\int \mathbf{r}(t) dt$.

2. Let **r** be a smooth vector function such that $\mathbf{r}(t) \neq \mathbf{0}$. Prove that

$$\frac{d}{dt}\Big[\|\mathbf{r}(t)\|\Big] = \frac{\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)}{\|\mathbf{r}(t)\|}.$$

Hint: $\|\mathbf{r}(t)\|^2 = \mathbf{r}(t) \cdot \mathbf{r}(t)$.

3. Find $\mathbf{r}(t)$ if $\dot{\mathbf{r}}(t) = t\mathbf{i} + e^t\mathbf{j} + te^t\mathbf{k}$, and $\mathbf{r}(0) = \mathbf{i} + \mathbf{j} + \mathbf{k}$.

Consider the curve ${\cal C}$ parametrized by the vector function

$$\mathbf{r}(t) = \langle \cos t, \sin t, \ln(\cos t) \rangle.$$

4. Find the unit tangent vector field, $\mathbf{T}(t)$, along C.

5. Find the arc length of the portion of the curve on the interval $0 \le t \le \frac{\pi}{4}$.

6. Reparametrize the curve

$$\mathbf{r}(t) = \left(\frac{2}{t^2 + 1} - 1\right)\mathbf{i} + \frac{2t}{t^2 + 1}\mathbf{j}$$

with respect to arc length measured from the point (1,0) in the direction of increasing t. Simplify as much as possible.