Name:	
M344: Calculus III (Su.19)	
Good Problems 4	

Sections 15.1, 15.2, 15.9

Instructions. Complete all problems on this paper. You may use any resources that you'd like, but be sure to show enough work.

1. [15 points] Compute $\iint_R 2(x+1)y^2 dA$, $R = [0,1] \times [0,3]$, by Riemann sum definition. You must use the Riemann sum definition to receive credit.

2–4. [10 points each] Compute the double integrals. Show enough work.

$$2. \qquad \int_1^4 \int_1^2 \left(\frac{x}{y} + \frac{y}{x}\right) dy \, dx$$

3.
$$\iint_{R} \frac{xy^2}{x^2 + 1} dA, \quad R = [0, 1] \times [-3, 3]$$

4.
$$\iint_R x \sin(x+y) \, dA, \quad R = [0, \pi/6] \times [0, \pi/3]$$

5. [15 points] Evaluate the double integral

$$\iint_D x \cos y \, dA,$$

where *D* is bounded by y = 0, $y = x^2$, and x = 1.

6. [15 points] Evaluate the integral by (carefully!) reversing the order of integration.

$$\int_0^1 \int_{\arcsin y}^{\frac{\pi}{2}} \cos x \sqrt{1 + \cos^2 x} \, dx dy$$

7. [25 points] Evaluate the integral by making an appropriate change of variables.

$$\iint_{R} \frac{x - 2y}{3x - y} \, dA,$$

where *R* is the parallelogram enclosed by the lines x-2y=0, x-2y=4, 3x-y=1, and 3x-y=8.

