M511: Linear Algebra (Spring 2018)

Instructor: Justin Ryan

Good Problems 1 - Section 3.1

Instructions Complete all problems, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Let *V* be a vector space. Show that the zero element $\mathbf{0} \in V$ is unique.

Suppose
$$\bar{y} \in V$$
 satisfies $\bar{x} + \bar{y} = \bar{x}$ for all $\bar{x} \in V$. (*)

Therefore,

 $\bar{0} = \bar{0} + \bar{y}$ by (*)

 $= \bar{y} + \bar{0}$ by A3.

and $\bar{0} \in V$ is unique. $\bar{1}$

- 2. Let *V* be a vector space and let $\mathbf{x} \in V$. Show that
 - 1. $\beta \mathbf{0} = \mathbf{0}$ for all $\beta \in \mathbb{R}$, and
 - 2. if $\alpha \mathbf{x} = \mathbf{0}$, then either $\alpha = 0$ or $\mathbf{x} = \mathbf{0}$.

1.
$$\beta \overline{D} = \beta (\overline{x} + (-\overline{x}))$$
 by A4
$$= \beta \overline{x} + \beta (-\overline{x})$$
 by A5
$$= \beta \overline{x} + (-\beta \overline{x}) \text{ since } -\overline{x} = -1 \cdot \overline{x} \text{ (from Res)}$$

$$= \delta \text{ by. A4.} \quad \delta D$$

2. Suppose 4x=0.

Then,

$$\overline{x} + d\overline{x} = \overline{x}$$

 $\Rightarrow (1+d)\overline{x} = |\overline{x}| \text{ by } A6. \text{ and } A8$
 $\Rightarrow \text{ either } 1+d>1 \text{ or } \overline{x} = \overline{0}.$

3. Let \mathbb{R}^+ denote the set of positive real numbers. Define the operation of scalar multiplication, denoted \circ , by

$$\alpha \circ x = x^{\alpha}$$

for each $x \in \mathbb{R}^+$ and each $\alpha \in \mathbb{R}$. Define the operation of addition, denoted \oplus , by

$$x \oplus y = x \cdot y$$

for all $x, y \in \mathbb{R}^+$. Is $(\mathbb{R}^+, \oplus, \circ)$ a vector space? Prove or disprove your answer.

- C1. Xye Rt, XOy=xy e Rt. 1
- 12. delly xellet, xxx>0 1.
- A1. $X \oplus y = x \cdot y = y \cdot x = y \oplus x$
- AZ . x⊕(402)= x.(4.3) = (x.4).5= (x04)0≥ √
- A3. 0=1 eR+ -> 00x=1 x= x . /
- 一 性. for Xelpt, (ママ)= ショ マの(-マ)= x・シュニュニ 0. ノ
- $\underline{A5}$. $do(x \oplus y) = (x \cdot y)^{d} = x^{d}y^{d} = (x \cdot x) \oplus (q \cdot y)$. \checkmark
- Ab. $(x+\beta)0x = x^{a+\beta} = x^A \cdot x^{\beta} = (x \cdot 0x) \oplus (\beta \cdot 0x)$
- $\underline{A7}$. $(a\beta) \circ x = x^{\alpha\beta} = (x^{\beta})^{\alpha} = \alpha \circ (\beta \circ x)$ $= (x^{\alpha})^{\beta} = \beta \circ (\alpha \circ x) \quad \forall$
- A8. 10x=x2=x /

Since all 10 axioms are satisfied, this is a verter space.

4. Let \mathbb{Z} denote the set of all integers with addition defined in the usual way, and define scalar multiplication, denoted \circ , by

$$\alpha \circ k = [\![\alpha]\!] \cdot k$$

for all $\alpha \in \mathbb{R}$ and all $k \in \mathbb{Z}$, where $[\![\,]\!]$ is the greatest integer function. The space $(\mathbb{Z}, +, \circ)$ is not a vector space. Which axioms fail to hold, and why?

A6. Let
$$d=\beta=2.5$$

Then $(a+\beta) \circ k = 50k = [5]k = 5k$.
but $k \circ k + \beta \circ k = [2.5]k = 2k + 2k = 4k$
and these are not equal,

Similarly,

At. Let
$$d=\beta=1.9$$

Then $(A\beta) \circ k = [3.61] \cdot k = 3k$

but $d \circ (\beta \circ k) = [1.9]^2 \cdot k = 1^2 \cdot k = k$.

and these are not equal.

5. Consider the vector spaces \mathbb{P}_n and \mathbb{R}^n with their usual additions and scalar multiplications, and consider the correspondence

$$p(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1} \leftrightarrow \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{pmatrix} = \mathbf{a}.$$

Show that

- 1. $\alpha p \leftrightarrow \alpha \mathbf{a}$ for every $\alpha \in \mathbb{R}$, and
- 2. $p + q \leftrightarrow \mathbf{a} + \mathbf{b}$.

1.)
$$dp(x) = \alpha a_1 + \alpha a_2 x + ... + \alpha a_n x^{n-1} \Leftrightarrow \begin{pmatrix} \alpha a_1 \\ \alpha a_2 \\ \vdots \\ \alpha \alpha n \end{pmatrix} = \alpha \alpha.$$

2. If
$$p(x) = a_1 + a_2 x + ... + a_n x^{n-1}$$
 and $q(x) = b_1 + b_2 x + ... + b_n x^{n-1}$,