M511: Linear Algebra (Spring 2018)

Instructor: Justin Ryan

Good Problems 2: Sections 3.2, 3.3

Instructions Complete all problems, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Determine the null space of the matrix.

$$\begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & -3 & 1 \\ -1 & -1 & 0 & -5 \end{pmatrix}$$

- **2.** Determine whether the following are subspaces of \mathbb{P}_4 . Clearly explain your answers.
 - 1. The set of polynomials in \mathbb{P}_4 of even degree.
 - 2. The set of polynomials of degree 3.
 - 3. The set of all polynomials $p \in \mathbb{P}_4$ such that p(0) = 0.
 - 4. The set of all polynomials in \mathbb{P}_4 having at least one real root.

- **3.** Which of the following are spanning sets for \mathbb{P}_3 ? Justify your answers.
 - 1. $\{1, x^2, x^2 2\}$
 - 2. $\{2, x^2, x, 2x + 3\}$
 - 3. $\{x+2, x+1, x^2-1\}$
 - 4. $\{x+2, x^2-1\}$

4.	Prove that any finite set of vectors that contains the zero vector must be linearly de-
	pendent.

5. Prove that any nonempty subset of a linearly independent set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is also linearly independent.