Name:	
M511. Linear Algebra (Spring 2019)	

M511: Linear Algebra (Spring 2018)

Instructor: Justin Ryan

Good Problems 3: Sections 3.4-3.5

Instructions Complete all problems, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Let *S* be the subspace of \mathbb{P}_3 consisting of all polynomials *p* such that p(0) = 0, and let *T* be the subspace of all polynomials *q* such that q(1) = 0. Find bases for *S*, *T*, and $S \cap T$.

2. Show that if *U* and *V* are subspaces of \mathbb{R}^n and $U \cap V = \{\mathbf{0}\}$, then

$$\dim(U+V) = \dim U + \dim V.$$

3. Given

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 6 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \quad S = \begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix},$$

find vectors \mathbf{u}_1 and \mathbf{u}_2 so that S will be the transition matrix from V to U.

4. Write the standard coordinates in \mathbb{P}_7 for the 6th degree Taylor polynomial of $f(x) = \cos(x)$.

5. Let $U = \{x, 1\}$ and $V = \{2x - 1, 2x + 1\}$ be ordered bases for \mathbb{P}_2 . Find the transition matrices $U \to V$ and $V \to U$.