Name:	
ME11. I !	

WICHITA STATE UNIVERSITY

M511: Linear Algebra (Spring 2018) Instructor: Justin Ryan Good Problems 5:

Instructions Complete all problems, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

- **1.** Consider the transformation $L: \mathbb{P}_3 \to \mathbb{P}_3$ defined by $L(p)(x) = x \cdot p'(x) + p(0)$.
 - *a*.) Prove that *L* is linear.

b.) Find the matrix representing *L* with respect to the ordered basis $\{1, (x-1), (x-1)^2\}$.

2. Let *L* be a linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$ satisfying

$$L \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 and $L \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$.

- *a.*) Write the matrices representing L with respect to the basis $U = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$, and with respect to the standard basis of \mathbb{R}^2 .
- *b.*) Compute $L \begin{pmatrix} 4 \\ 4 \end{pmatrix}$, and write your answer in coordinates with respect to the basis $V = \left\{ \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \begin{pmatrix} -3 \\ -1 \end{pmatrix} \right\}$.

- 3. Let $A \in \mathbb{R}^{3 \times 5}$ with columns $\mathbf{a}_1, \dots, \mathbf{a}_5$. Further suppose that \mathbf{a}_1 and \mathbf{a}_3 are linearly independent, $\mathbf{a}_2 = 2\mathbf{a}_1$, $\mathbf{a}_4 = \mathbf{a}_1 + \mathbf{a}_3$, and $\mathbf{a}_5 = \mathbf{a}_4 \mathbf{a}_2$.
 - *a.*) What is the reduced row echelon form (RREF) of *A*?

b.) What is the column space of *A*?

4. Let $A = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$ be a basis of \mathbb{R}^4 and $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis of \mathbb{R}^3 . Suppose $L : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

$$L(\mathbf{x}) = x_4 \mathbf{b}_1 + x_2 \mathbf{b}_2 + (x_1 - x_3) \mathbf{b}_3,$$

where $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ is given in *A*-coordinates. Write the matrix representing *L* with respect to the bases *A* and *B*.