Name: _______

M511: Linear Algebra (Spring 2018)

Instructor: Justin Ryan

Good Problems 7: Section 5.1

Instructions Complete all problems, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Show that if **x** and **y** are any vectors in \mathbb{R}^n , then $\|\mathbf{x} + \mathbf{y}\|^2 \le (\|\mathbf{x}\| + \|\mathbf{y}\|)^2$, and hence

$$||x+y|| \le ||x|| + ||y||.$$

When does equality hold? Give a geometric interpretation.

2. Show that for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$$

Give a geometric interpretation.

3. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and define

$$\mathbf{p} = \left(\frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}\right) \mathbf{y}$$
 and $\mathbf{z} = \mathbf{x} - \mathbf{p}$.

- a.) Show (analytically) that $\mathbf{p} \perp \mathbf{z}$. Sketch a picture to illustrate the relationship between $\mathbf{x}, \mathbf{y}, \mathbf{p}$, and \mathbf{z} .
- *b.*) If $\|\mathbf{p}\| = 6$ and $\|\mathbf{z}\| = 8$, determine the value of $\|\mathbf{x}\|$.