Name:____

M511: Linear Algebra (Spring 2018)

Instructor: Justin Ryan

Good Problems 9: Section 5.4

Instructions Complete all problems, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Consider the inner product \langle , \rangle on $V = \mathbb{P}_4$.

$$\langle p, q \rangle = \int_{-1}^{1} p(x) q(x) dx$$

Find the matrix G representing \langle , \rangle with respect to the standard basis.

Use the matrix *G* to compute $\langle p, q \rangle$ where $p(x) = x^3 - 2x^2 + x$ and $q(x) = x^2 - 9x + 3$.

2. Let *V* be a vector space with inner product \langle , \rangle . The *length* or *magnitude* of any vector $\mathbf{x} \in V$ is defined to be

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Find the lengths of the vectors $p(x) = x^3 - 2x^2 + x$ and $q(x) = x^2 - 9x + 3$ with respect to each of the following inner products on \mathbb{P}_4 .

$$\langle p, q \rangle_1 = \int_{-1}^1 p(x) q(x) dx$$
, and
 $\langle p, q \rangle_2 = p(x_1) q(x_1) + p(x_2) q(x_2) + p(x_3) q(x_3) + p(x_4) q(x_4)$,

where $\mathbf{x} = (-2, -1, 1, 2)^T$.

3. Let $\mathbf{x}, \mathbf{y} \in V$, and let \langle , \rangle be an inner product on V. The *vector projection of* \mathbf{x} *onto* \mathbf{y} is defined to be

$$\text{proj}_{\boldsymbol{y}}\boldsymbol{x} = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{y}\|} \, \frac{\boldsymbol{y}}{\|\boldsymbol{y}\|}.$$

Compute $\text{proj}_p q$ with respect to both of the inner products defined in problem 2.

4. Prove the *General Cauchy-Schwarz-Bunyachevsky Inequality*:

Let (V, \langle, \rangle) be an inner product space. Then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\| \|\mathbf{y}\|,$$

and equality holds if and only if \mathbf{x} and \mathbf{y} are linearly dependent.

Hint: Take $\operatorname{proj}_{\mathbf{y}}\mathbf{x}$ and apply the Pythagorean Theorem.

From the proof of CSB, define the angle between \mathbf{x} and \mathbf{y} by

$$\theta(\mathbf{x}, \mathbf{y}) = \cos^{-1}\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}\right).$$

Check that this is well-defined.