Name:
Instructions. Complete all problems below, showing enough work. Read carefully and follow a instructions. You may not use any notes or electronic devices. All you need is a pencil and you brain.
1. True/False [20 points] Neatly write T on the line if the statement is always true, and F otherwis [1 point each]. In the space provided below the statement, give sufficient explanation of you answer [3 point each].
1.a. Every homogeneous linear system is consistent.
1.b. Let $A \in \mathbb{R}^{n \times n}$. If A is nonsingular and $A = A^{-1}$, then either $A = I$ or $A = -I$.
1.c. Let $A \in \mathbb{R}^{n \times n}$ and $k \in \mathbb{R}$. Then $\det(k \cdot A) = k \cdot \det(A)$.
1.d. If $\{\mathbf{x}_1,, \mathbf{x}_k\}$ are vectors in a vector space V and span $\{\mathbf{x}_1,, \mathbf{x}_k\}$ = span $\{\mathbf{x}_1,, \mathbf{x}_{k-1}\}$ then $\{\mathbf{x}_1,, \mathbf{x}_k\}$ are linearly dependent.
1.e. Let $A \in \mathbb{R}^{m \times n}$. Then $\dim(\text{Null}(A)) = \dim(\text{Null}(A^T))$.

2. The matrix A is nonsingular. Compute its inverse without using determinants or cofactors.

$$A = \left(\begin{array}{cc} 1 & -2 \\ -3 & 5 \end{array}\right)$$

3. Find a basis for the null space of the matrix.

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & -1 \\ 2 & -2 & -1 & -2 \\ -1 & 3 & 2 & 1 \end{array}\right)$$

4. Consider the matrix $A \in \mathbb{R}^{3 \times 3}$:

$$A = \left(\begin{array}{rrr} 4 & 2 & -1 \\ -2 & 0 & 0 \\ 8 & -2 & 1 \end{array} \right)$$

- *a*.) Find the *LU* factorization of *A*.
- *b.*) Use your answer to part *a.*) to compute the determinant of *A*.

5. Solve the linear system of equations using Cramer's Rule. Give your answers as reduced fractions. You must use Cramer's Rule to receive credit.

$$\begin{cases} 3x_1 + 5x_2 &= -2\\ 2x_1 + 4x_2 &= 1 \end{cases}$$

Name:	
ME11.	Lincon Alachus

M511: Linear Algebra

Summer 2018

Midterm Exam: Chapters 1–3 (part II)

Instructions. Complete all problems below, showing enough work. Read carefully and follow all instructions. You may not use any notes or electronic devices. All you need is a pencil and your brain.

6. Consider the matrix

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} -\frac{1}{2} & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 4 \\ 0 & 1 \end{array}\right).$$

Compute the determinant of *A*.

7. Find the values of λ for which the matrix $A \in \mathbb{R}^{3\times 3}$ is singular.

$$A = \left(\begin{array}{cc} 1 - \lambda & 2\\ 2 & 1 - \lambda \end{array}\right)$$

8. Solve the linear system of equations, if possible, using your favorite method.

$$\begin{cases} x_1 + 2x_2 - x_3 &= 1 \\ 2x_1 - x_2 + x_3 &= 3 \\ -x_1 + 2x_2 + 3x_3 &= 7 \end{cases}$$

- **9.** Consider the subset of $C^{\infty}(\mathbb{R})$, $S = \text{span}\{e^t, e^{-t}\}$.
 - $\it a$.) What is the dimension of $\it S$? Justify your answer.
 - *b.*) Recall that $\cosh(t) = \frac{1}{2} (e^t + e^{-t})$ and $\sinh(t) = \frac{1}{2} (e^t e^{-t})$. Find the transition matrix from $\{e^t, e^{-t}\}$ to $\{\cosh(t), \sinh(t)\}$.

10. Consider the following vectors in \mathbb{R}^2 ,

$$\mathbf{u}_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, and $\mathbf{v}_2 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

Write $\mathbf{x} = 4\mathbf{v}_1 - 2\mathbf{v}_2$ as a linear combination of \mathbf{u}_1 and \mathbf{u}_2 .