Name: Key
M511: Linear Algebra (Summer 2018)

Good Problems 2: Chapter 2

Instructions Complete all problems on this paper, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Let $A, B \in \mathbb{R}^{3 \times 3}$ with det(A) = 4 and det(B) = 6, and let E be an elementary matrix of type I. Determine the value of each of the following:

a.)
$$\det(\frac{1}{2}A) = (\frac{1}{2})^7 \text{ Let}(A) = \frac{1}{8} \cdot 4 = \frac{1}{2}$$

b.)
$$\det(B^{-1}A^T) = \det(B^{-1}) \cdot \det(A^T) = \frac{1}{\det(B)} \cdot \det(A) = \frac{4}{6} = \frac{2}{3}$$

c.)
$$det(EA^2) = det(E) \cdot det(A)^2 = -1 \cdot 4^2 = -16$$

2. If $A \in \mathbb{R}^{n \times n}$ is nonsingular, show that $A^T A$ is nonsingular and $\det(A^T A) > 0$.

Met
$$(ATA)$$
 = det (A^{\dagger}) · det (A) = det $(A)^2 \ge 0$.
Since A is novisingular, det $(A) \ne 0$. Thus det (ATA) = det $(A)^2 \ne 0$.
Moreover, det (ATA) = det $(AI^2 > 0$.

3. Let $A \in \mathbb{R}^{n \times n}$ and let λ be a scalar. Show that $\det(A - \lambda I) = 0$ if and only if $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq \mathbf{0}$.

det(A-XI)=0 if and only if (A-XI) is singular. By Thm 1.5.2, (A-XI) is singular if and only if there exists
$$x \neq 0$$
 satisfying $(A-XI) = \overline{0}$.

$$(A-\lambda I)\bar{x} = \bar{0}$$
.
By matrix algebra value,
 $(A-\lambda I)\bar{x} = \bar{0} \Rightarrow A\bar{x} - \lambda I\bar{x} = \bar{0}$
 $\Rightarrow A\bar{x} - \lambda \bar{x} = \bar{0}$
 $\Rightarrow A\bar{x} = \lambda \bar{x}$

4. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{y}$, and let $A \in \mathbb{R}^{n \times n}$. Show that if $A\mathbf{x} = A\mathbf{y}$, then $\det(A) = 0$.

$$A\bar{x} = A\bar{y} \Rightarrow A\bar{x} - A\bar{y} = \bar{0}$$

 $\Rightarrow A(\bar{x} - \bar{y}) = \bar{0}$

Since $x \neq y$, then $x - y \neq 0$, hence (x - y) is a nontrivial solution to the homogeneous equation. By theorem 1.5.2, IA is singular. Therefore $A \neq 0$.

5. Let

$$A = \begin{pmatrix} x & 1 & 1 \\ 1 & x & -1 \\ -1 & -1 & x \end{pmatrix}.$$

- *a.*) Compute all minors and cofactors of *A*.
- b.) Compute det(A). (Your answer should be a function of x.)
- *c*.) For what values of *x* will the matrix be singular?

a)
$$M_{11} = \begin{pmatrix} x & -1 \\ -1 & x \end{pmatrix}$$
 $M_{12} > \begin{pmatrix} 1 & -1 \\ -1 & x \end{pmatrix}$ $M_{13} = \begin{pmatrix} 1 & X \\ -1 & -1 \end{pmatrix}$ The cofactor $M_{11} + M_{12} + M_{13} = \begin{pmatrix} 1 & X \\ -1 & -1 \end{pmatrix}$

$$M_{21} = \begin{pmatrix} 1 & 1 \\ -1 & x \end{pmatrix}$$

$$M_{22} = \begin{pmatrix} 1 & 1 \\ -1 & x \end{pmatrix}$$

$$M_{33} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{33} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{33} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{33} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{33} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{33} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{33} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{34} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{35} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

$$M_{35} = \begin{pmatrix} 1 & 1 \\ X & -1 \end{pmatrix}$$

b) Let (A) =
$$a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} = \times (x^{2}-1) + 1(x^{2}+1)$$

$$= \sqrt{(x^{2}-1)}$$

c) A will be singular iff
$$def(A) = 0$$
.

$$x(x^{2}-1) = 0$$

$$x(x+i)(x-1) = 0$$

$$x = 0, -1, 1$$

6. Let

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{pmatrix}.$$

- *a*.) Compute the *LU* factorization of *A*.
- *b.*) Use the *LU* factorization to determine the value of det(*A*).