<u>Defin</u>. A <u>Taylor Expansion</u> Ta at a point a EIRⁿ is an arbitrary series $$T_{a} = \sum_{\alpha} \frac{\lambda_{\alpha,\alpha}}{\alpha!} (x-a)^{\alpha} \qquad \lambda_{\alpha,\alpha} \in \mathbb{R}$$ for a family { Ta}aeu, U = IRn, ∀x,yeK such that 11x-y11 < 8, then $\lambda_{\alpha}: U \rightarrow \mathbb{R}$ $a \longmapsto \lambda_{\alpha, \alpha}$ Whitney's Extension Theorem Let $K \subset \mathbb{R}^n$ be compact and $E \subset \mathbb{R}^n$ and $E \subset \mathbb{R}^n$ be compact and $E \subset \mathbb{R}^n$ be a family of Taylor expansions on K. There exists $f \in C^\infty(\mathbb{R}^n)$ such that $T_a f = T_a$ if and only if for any multiindex d, $m \in \mathbb{N}$ and $E \supset 0$, there exists $E \supset 0$ such that $(*) \left| \lambda_{\alpha,y} - \sum_{|\beta|=0}^{m} \frac{\lambda_{\alpha+\beta,x}}{\beta!} (y-x)^{\beta} \right| < \varepsilon ||y-x||^{m}$ Lemm 1A. Let $a_k \to 0$ be a sequence in \mathbb{R}^n . Assume \exists ce \mathbb{N} such that MaxII, MaxII < c ||ax - ax|| ∀ K ≠ l and let { Tax} kern be a family of Taylor Expansions w/ To = 0. If (*) holds at the origin, then there exists a global smooth function $f \in C^{\infty}(\mathbb{R}^n)$ s.t. $T_{ak} f = T_{ak}$ and $T_a f = 0$. Proof: [N.S] Lemma 7.4 🗒 Let E, E, M be sheaves of vector spaces over M. In reality, E_1 , $E_2 \rightarrow M$ are vector bundles over M and E_1 , E_2 are the sheaves of germs of smooth sections of E_1 and E_2 . The stalks of E, and Ez are vector spaces. A linear morphism $\emptyset: \mathcal{E}, \rightarrow \mathcal{E}_z$ is a smooth map of the ringed spaces \mathcal{E}_1 , \mathcal{E}_2 that are "stalk-preserving" and linear along stalks. Lemma 1B. Let $\varphi: \mathcal{E}_1 \to \mathcal{E}_2$ be a linear morphism of sheaves. For any $p \in M$, there exists an open $n \cdot bhd$ $p \in U \subset M$ and a natural number $k \in IN$ such that For all $g \in U$, $j^k s_1(q) = j^k s_2(q)$ implies $\ell(s_1)(q) = \ell(s_2)(q)$. $$\xi_1 \longrightarrow \xi_2$$ $$S_1 \longrightarrow \xi_2$$ $$S_1 \longrightarrow \xi_2 \qquad \text{on } U.$$ <u>Proof</u>: We can assume $M = \mathbb{R}^n$ and let $E_1 = \mathbb{R}^n \times \mathbb{R}$, the trivial line bundle, and $p = Q \in \mathbb{R}^n$. RE. Justify the reduction above. Then we need to prove that 3 Q & U C IR" and K & IN such that $j^k y f = 0$ implies $\varphi(f)(y) = 6$ for all y E U. First prove. $\exists N>0$, an open nobled U of Q and $k \in IN$, such that $\int_{\mathcal{A}}^{\mu} f = 0 \Rightarrow | \varphi(f)(y) | < N$ for all yell- 203. If not, then considering the noblds $U_m := \{\{11 \times 11 \le m\}\}$ we can produce a sequence of pts $\{11 \times 11 \le m\}$ and we can find $\{11 \times 11 \le m\}$ $$\int_{x_m}^k h_m = 0$$ but $| \varphi(h_m)(x_m) | > m$ By Lemma 1A, \exists a smooth global function $f \in \mathcal{F}(\mathbb{R}^n)$ such that $$j_{xk}^{\infty}f=j_{xk}^{\infty}h_{k}, \quad j_{o}^{\infty}f=0.$$ (contid on next page) Thursday, February 23, 2017 1:39 PM This implies $P(f)(x_k) = P(h_k)(x_k)$, and P(f)(o) = 0, and we obtain a contradiction: $$\varphi(f)(x_k) \rightarrow \varphi(f)(0) = 0$$ but $|\varphi(f)(x_k)| = |\varphi(h_k)(x_k)| > k$ This proves the Lemma in U- E03 To prove this at $0 \in U \subset \mathbb{R}^n$, let f be a function such that $j_0^* f = 0$. Consider a sequence of points $x_m \to 0$ such that Also consider a sequence of jets $$(j_{x_m}^k f) = \prod_{x_m} = \sum_{\alpha} \frac{\lambda_{\alpha,x_m}}{\alpha!} (x - x_m)^{\alpha}$$ defined by $$\lambda_{x,x_m} := \begin{cases} (D_x f)(x_m) & \text{if } |x| \leq k \\ 0 & \text{otherwise} \end{cases}$$ By Lemm 1A, \exists a global smooth function $u \in f(\mathbb{R}^n)$ such that Then $j_{xm}^{k} u = j_{xm}^{k} f$ implies that $g(u)(x_m) = g(f)(x_m)$. On the other hand, P(u)(0) = 0 by linearity. So P(f)(0) = 0. Let E,, Ez be vector bundles over a smooth manifold M. The jet spaces $J^k E \rightarrow M$ are vector <u>boundles</u>, $J^k E = J E$ inherits on R-linear structure along stalks. Defin. A linear differential operator $E, \sim E_z$ is an IR-linear norphism of ringed spaces over M, $P: J^{\infty}E_s \to E_z.$ Let \mathcal{E}_{i} and \mathcal{E}_{z} be the sheaves of smooth sections, given a Linear Differential Operator $P: J^{\infty} E_{i} \to E_{z}$, we can define a linear morphism of sheaves by Cliver in sections of \mathcal{E}_{z} . Peetre's Theorem. The map P -> Pp is a linear isomorphism where $Diff_{R}(E_{1},E_{2})$ is the collection of all linear diff. operators. Proof: Let $P: E_1|_V \to E_2|_V$ be a R-linear sheaf morphism. Fix a point $x \in V$. We need to verify that on a sufficiently small nobble $U \ni X$, P = PP is determined by an L.D.O. of finite order. By Lemma 1B, \exists a nobal $u \in V$ of x and $k \in IV$ such that the map $P: (J^*E_i)|_{u} \rightarrow E_{z}|_{u}$ (contain next) $P: j_y^k s \mapsto p(s)(y)$ for yell is well-defined. P is R-linear, we need to show it is smooth, WLOG E, , Ez are trivial line bundles over IRn. Therefore locally $$Pf = \sum_{|a|=0}^{k} a_{k} D_{k} f(p)$$ R.E. The smoothness of the a_{x} is "easily achieved" by induction using $P(j^{k}f) = P(f)$ is smooth for any k-jet $J^{k}f$ of f. Locally Defin. A (linear) differential operator is given locally by (Loral) <u>Pectre Theorem</u>. Let E, → M and Ez → M be Vector bundles over the same connected base manifold and suppose P: \(E, \rightarrow \Gamma \) is a linear morphism of sheaves satisfying supp(Po) \(\Gamma \) supp(\(\sigma \)) for all \(\sigma \) \(\Gamma \) \(\Gamma \) \(\Gamma \) in ear diff. operator. Go through Parkers Proof for this.